
CIMA: Compiler-Enforced Resilience Against Memory Safety Attacks in Cyber-Physical
Systems

Eyasu Getahun Chekolea,b, Sudipta Chattopadhyayb, Martı́n Ochoab,c, Huaqun Guoa, Unnikrishnan Cheramangalathb

aInstitute for Infocomm Research, Singapore 138632, Singapore
bSingapore University of Technology and Design 487372, Singapore

cAppGate Inc, Bogotá, Colombia

Abstract

Memory-safety attacks have been one of the most critical threats against computing systems. Although a wide-range of defense
techniques have been developed against these attacks, the existing mitigation strategies have several limitations. In particular,
most of the existing mitigation approaches are based on aborting or restarting the victim program when a memory-safety attack is
detected, thus making the system unavailable. This might not be acceptable in systems with stringent timing constraints, such as
cyber-physical systems (CPS), since the system unavailability leaves the control system in an unsafe state. To address this problem,
we propose CIMA – a resilient mitigation technique that prevents invalid memory accesses at runtime. CIMA manipulates the
compiler-generated control-flow graph to automatically detect and bypass unsafe memory accesses at runtime, thereby mitigating
memory-safety attacks along the process. An appealing feature of CIMA is that it significantly improves system availability and
resilience of the CPS even under the presence of memory-safety attacks. To this end, we design our experimental setup based on a
realistic Secure Water Treatment (SWaT) and Secure Urban Transportation System (SecUTS) testbeds and evaluate the effectiveness
and the efficiency of our approach. The experimental results reveal that CIMA handles memory-safety attacks effectively while
meeting the real-time constraints and physical-state resiliency of the CPS under test. Using CIMA, we have also discovered a
memory-safety vulnerability in the firmware of programmable logic controllers and a CVE ID has already been assigned for it.

Keywords:
Cyber-Physical Systems Security, CPS Security, Memory-Safety Attacks, Software Security, Critical Infrastructures Security,
Mitigation, Efficiency, Resilience, Availability

1. Introduction

Software systems with stringent real-time constraints are of-
ten written in C/C++ since they aid in generating efficient
program binaries. However, since memory management is
handled manually in C/C++, programs written in such lan-
guages often suffer from memory-safety vulnerabilities, such
as buffer over/underflows, dangling pointers, double-free errors
and memory leaks. Due to the difficulty in discovering these
vulnerabilities, they might often slip into production run. This
leads to memory corruptions and runtime crashes even in de-
ployed systems. In the worst case, memory-safety vulnerabili-
ties can be exploited by a class of cyber attacks, which we refer
to as memory-safety attacks [1, 2]. Memory-safety attacks, such
as code injection [3, 4] and code reuse [5, 6, 7], can cause dev-
astating effects by compromising vulnerable programs in any
computing system. These attacks can hijack or subvert specific
operations of a system or take over the entire system, in general.
In certain domains, such as in Cyber-Physical Systems (CPS),
memory-safety attacks can cause significant physical impact to
the CPS by subverting the control logic. A detailed account of
such attacks is provided in existing works [7, 8].

Given a system vulnerable to memory-safety attacks, its run-
time behavior will depend on the type of memory accesses

being made, among others. For instance, accesses to an ar-
ray element beyond the imposed length of the array (buffer
overflows) could be exploited to overwrite the return address
of a function. However, a safety check generated at compile
time [9] can be added before any memory access to ensure va-
lidity of the memory going to be accessed. This can be accom-
plished via compiler-assisted program analysis. Traditionally,
such memory-safety compilers will generate an exception and
abort the program when such violations are found at run-time.
In the past, this approach has been proposed for improving the
security of CPS [8, 10] and it has been shown that it can be use-
ful to prevent exploitation in the traditional sense (i.e. injecting
arbitrary malicious logic to a PLC). However, such an approach,
while preventing certain types of exploitation, can be in turn
exploited for availability attacks, which aim to make the victim
system unavailable for an arbitrary duration. In CPS, availabil-
ity is one of the most importante security properties to preserve,
often more than confidentiality [11], since system unavailabil-
ity leads the control system to an unsafe state and, in return,
may cause system disruption and physical damages. Traditional
availability attacks such as Denial-of-Service (DoS) attacks can
be detected by an intrusion detection system (IDS). However, it
is more difficult to detect an availability attack triggered by a
memory-safety vulnerability, since one carefully crafted packet

would suffice to crash the programmable logic controller (PLC)
in CPS.

In this paper, we propose a strategy to offer more resilience
to availability attacks that are triggered by exploiting memory
safety vulnerabilities of CPS components such as PLCs. Con-
cretely, we avoid aborting the vulnerable program when detect-
ing a memory safety violation at runtime. Instead, our proposed
approach proactively prevents memory-safety violations by by-
passing the illegal instructions, i.e., instructions that attempt to
access memory illegally. In such a fashion, our approach favors
the availability of the targeted system. We argue that, although
by doing so we are technically modifying the low-level seman-
tics of the system under attack, we do so only for combinations
of inputs and states that lead to a memory-safety violation, and
that are thus outside the “intended” program semantics, which
is undefined in those cases.

Although our approach is conceptually simple, it is however
technically challenging to bypass the manifestation of illegal
memory access. This is because, such a strategy demands full
control to manipulate the normal flow of program execution.
To bypass the execution of certain instructions, we need mod-
ifications to the control flow of the program. From a techni-
cal perspective, such modifications involve the manipulation of
program control flow over multitudes of passes in mainstream
compilers.

To alleviate the technical challenges, CIMA systematically
combines compile-time instrumentation and runtime monitor-
ing to defend against memory-safety attacks. Specifically, at
compile time, each instrumented memory access is guarded via
a conditional check to detect its validity at runtime. In the event
where the conditional check fails, CIMA skips the respective
memory access at runtime. To implement such a twisted flow
of control, CIMA automatically transforms the program control
flow logic within mainstream compilers. This makes CIMA a
proactive mitigation strategy against a large class of memory-
safety attacks.

It is the novel mitigation strategy and the evaluatuon on re-
alistic CPS testbeds that sets our CIMA approach apart from
existing related works [9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24]. Most of the existing mitigation schemes against
memory-safety attacks are primarily programmed to abort or
restart the victim system when an attack or a memory-safety
violation is detected. Other schemes, such as self-healing
[25, 26, 27] or live patching [28], are based on directly de-
tecting exploitations or attacks and resuming the corrupted sys-
tem from a previous safe state. CIMA never aborts the system
and avoids the heavy overhead of maintaining system states for
checkpoints. On the contrary, CIMA follows a fundamentally
different approach, i.e., to continue execution by skipping only
the illegal instructions. In general, CIMA is a resilient miti-
gation strategy that effectively prevents memory-safety attacks
and improves system availability with acceptable overhead.

Although our proposed security solution is applicable to any
computing system that involves C/C++ programs, we mainly
focus on the CPS domain. This is because, unlike mainstream
systems, CPS often imposes conflicting design constraints in-
volving real-time guarantees and physical-state resiliency in-

volving its physical dynamics and security. In this work, we
also formally model these design constraints and use them as
benchmarks to evaluate the efficiency and resilience of our pro-
posed solution.

In CPS, the memory-safety vulnerabilities might be found
in the firmware (or sometimes in the control software) of
PLCs. Such firmware is commonly implemented in C/C++ for
the sake of efficiency. Consequently, it is not uncommon to
have buffer over/underflows and dangling pointers being regu-
larly discovered even in modern PLCs. In fact, recent trends
in Common Vulnerabilities and Exposures (CVEs) show the
high volume of interest in exploiting these vulnerabilities in
PLCs [29, 30, 31, 32, 33, 34, 35, 36]. This shows that the mit-
igation of memory-safety attacks in CPS should not merely be
restricted to academic research. Instead, it is a domain that re-
quires urgent and practical security solutions to protect a variety
of critical infrastructures at hand. Nonetheless, attacks that ma-
nipulate sensor and actuator values in CPS (either directly on
sensors/actuators or on communication channels) are orthogo-
nal issues that are out of our scope, and that can be mitigated
using for instance physical invariants [37] or model-based ap-
proaches [38, 39, 40].

In summary, our work tackles the problem of ensuring criti-
cal systems and services to remain available and effective while
successfully mitigating a wide-range of memory-safety attacks.
We offer a concrete implementation of our approach and an
evaluation in SWaT and SecUTS testbeds. We also discuss lim-
itations of our approach. We make the following technical con-
tributions:

1. We effectively prevent system crashes that could be arisen
due to memory-safety violations.

2. We effectively and efficiently prevent memory-safety at-
tacks in any computing system.

3. We define the notion of physical-state resiliency that is
crucial for CPS and should be met alongside strong se-
curity guarantees.

4. Our mitigation solution ensures physical-state resiliency
and system availability with reasonable runtime and stor-
age overheads. Thus, it is practically applicable to sys-
tems with stringent timing constraints, such as CPS. To the
best of our knowledge, such a dual combination of achiev-
ing memory-safety and meeting real-time and availability
constraints of the CPS is a feat not accomplished by any
existing work.

5. We evaluate the effectiveness and efficiency of our ap-
proach on two realistic CPS testbeds.

2. Background

In this section, we introduce the relevant background in the
context of our CIMA approach.

2.1. CPS

CPS constitutes of complex interactions between entities in
the physical space and the cyber space over communication

2

networks. Unlike traditional IT systems, such complex inter-
actions are accomplished via communication with the physi-
cal world via sensors and with the digital world via controllers
(PLCs) and other embedded devices. CPS usually impose hard
real-time constraints. If such real-time constraints are not met,
then the underlying system might run into an unstable and un-
safe state. Moreover, the devices in a typical CPS are also re-
source constrained. For example, PLCs and I/O devices have
limited memory and computational power. In general, a typical
CPS consists of the following entities:

• Physical plants: Physical systems where the actual pro-
cesses take place.

• Sensors: Devices that are capable of reading or observing
information from plants or physical processes.

• PLCs: Controller devices that receive sensor inputs, make
decisions and issue control commands to actuators.

• Actuators: Physical entities that are capable of imple-
menting the control commands issued by the PLCs.

• Communication networks: The communication medium
through which packets containing sensor inputs, control
commands, diagnostic information and alarms transmit
from one CPS entity to another.

• SCADA: A software entity designed for monitoring and
controlling different processes in a CPS. It often comprises
a human-machine interface (HMI) and a historian server.
The HMI is used to display state information of plants and
physical processes in the CPS. The historian server is used
to store all operational data and the history of alarms.

An abstraction of a typical CPS architecture is shown in Fig-
ure 1. In Figure 1, x denotes the physical state of the plant,
y captures the sensor measurements and u denotes the control
command computed by the PLC at any given point of time.

Figure 1: An abstraction of a CPS model

2.2. Memory-safety tools

A wide-range of memory-safety tools have been developed
against memory-safety attacks. However, their applicability in
CPS is limited due to several reasons. This includes the lack

of error coverage, significant performance overhead, ineffec-
tive mitigation strategy and other technical incompatibility is-
sues. After researching and experimenting on various memory-
safety tools, we chose ASan [9] as our memory error detector
tool. Our choice is motivated by its broad error coverage, high
detection accuracy and relatively low runtime overhead when
compared with other code-instrumentation based tools [9, 41].

ASan is a compile-time memory-safety tool based on code
instrumentation. It instruments C/C++ programs at compile
time and creates poisoned (i.e. illegal) memory regions, known
as redzones, between any two stack, heap and global vari-
ables. As these redzones are not addressable by the running
program, any attempt to access them is an illegal behavior and
will be detected as a memory-safety violation. In this way, the
ASan instrumented program will contain additional ASan li-
braries, which are checked to detect possible memory-safety vi-
olation at runtime. Such an instrumented code can detect buffer
over/underflows, use-after-free errors (dangling pointers), use-
after-return errors, initialization order bugs and memory leaks.

Since ASan was primarily designed for x86 architectures, it
has compatibility issues with RISC-based ARM or AVR based
architectures. Therefore, we adapted ASan for ARM-based ar-
chitecture in our system. ASan may also rarely miss some
memory violations if an attacker manages to jump over cer-
tain redzones and corrupt regions outside the redzones [9], but
with very low probability. However, such issues are already ad-
dressed by pointer-based tools, e.g., SoftBoundCETS [18, 19],
which we intend to use in our future experimentation.

The other major limitation of ASan is its ineffective mitiga-
tion strategy; it simply aborts the system whenever a memory-
safety violation or an attack is detected. This makes ASan
inapplicable in systems with stringent availability constraints,
such as CPS. Due to this reason, ASan is often considered as
rather a debugging tool than a runtime monitoring tool. How-
ever, using ASan only as a debugging tool does not guarantee
memory-safety. This is because most memory-safety vulnera-
bilities (e.g. buffer overflows) can be probed by systematically
crafted inputs by attackers at runtime. Since carefully tailored
inputs might not be used during debugging, ASan might miss
important memory bugs, which can be exploited by an attacker
at runtime. Therefore, only debugging the program does not
offer sufficient guarantee against memory-safety attacks or vio-
lations.

In our CIMA approach, we adopt ASan for the dual pur-
pose of debugging and runtime monitoring, with the specific fo-
cus on mitigating memory-safety vulnerabilities. As a runtime
monitoring tool, CIMA leverages on ASan to detect attacker
injected memory-safety violations. Moreover, CIMA enhances
the capability of ASan to mitigate memory-safety bugs on-the-
fly. This is to ensure the availability of the underlying system
and in stark contrast to plain system abort.

3. Attacker and system models

In this section, we first discuss the attacker model. Then, we
discuss the different traits of formally modeling our system and
the related design constraints.

3

3.1. Attacker model
The main objective of memory-safety attacks, such as code

injection and code reuse attacks, is to get privileged access or
take control (otherwise to hijack/subvert specific operations)
of the vulnerable system. To achieve this, the attacker ex-
ploits memory-safety vulnerabilities, such as buffer overflows
and dangling pointers that can be found in the targeted pro-
gram. To illustrate the exploitation strategies with an example,
we provide a simple C/C++ code snippet shown in Program 1.
A high-level memory layout of the program is demonstrated in
Figure 2a, displaying only a few memory addresses that are rel-
evant to illustrate the attack. This includes the defined buffer
and extended instruction pointer (EIP), which is the return ad-
dress of the program.

This program contains a buffer overflow vulnerability as the
“gets(buffer)” function (in Program 1, Line 4) allows the user
to provide an input that is larger than the defined buffer size. To
exploit this vulnerability, the attacker creates a systematically
tailored input that will serve to overwrite the buffer, the EIP
and other memory addresses. Specifically, the tailored input
comprises the attacker defined address (i.e. 0×xy in Figure 2b),
that will serve to overwrite the EIP, and a malicious code, that
will be injected in the program’s address space (in case of code
injection attacks). The tailored input is illustrated in Figure 2b.
As demonstrated in Figure 2c, the attacker defined address (that
overwrites the EIP) is made to point the start of the injected
malicious code (in case of code injection attacks) or existing
system modules (in case of code reuse attacks). The attacker
will then send this carefully crafted input to the buffer to launch
the actual attack. A detailed account of such memory-safety
exploits can be found in [7, 42].

Program 1: A sample buffer overflow vulnerability
1 foo() {
2 char buffer[16];
3 printf(“Insert input: ”);
4 gets(buffer);
5 }

In brief, a typical memory-safety attack targeting PLCs in
CPS follows the following steps (See Figure 3):

1. Interacting with the victim PLC, e.g., via network connec-
tion (for remote attacks).

2. Finding a memory-safety vulnerability (e.g., buffer over-
flow, dangling pointers) in the PLC firmware or control
software with the objective of exploiting it.

3. Triggering a memory-safety violation on the PLC, e.g.,
overflowing a buffer.

4. Overwriting critical addresses of the vulnerable program,
e.g., overwriting the EIP (i.e. the return address of the PLC
program).

5. Using the modified address, divert control flow of the pro-
gram to an injected (malicious) code (i.e. code injection
attacks) or to an existing module of the vulnerable pro-
gram (i.e. code reuse attacks). In the former case, the at-
tacker may take over the PLC with the injected malicious

(a) Memory layout with relevant addresses

(b) The attacker created tailored input

(c) Diverting control to the injected code (code injection attacks) or system modules
(code reuse attacks)

Figure 2: A high-level illustration of memory-safety attacks exploitation strate-
gies

code. In the latter case, the attacker still needs to collect
appropriate gadgets from the program (basically by scan-
ning the program’s text segment), then she will synthesize
a shellcode that will allow her to take over the PLC.

3.2. Modeling CPS design constraints

Most cyber-physical systems are highly time-critical. The
communication between its different components, such as sen-
sors, controllers (PLCs) and actuators, is synchronized by sys-
tem time. Therefore, delay in these CPS nodes could result in
disruption of the control system or damage the physical plant.
In particular, PLCs form the main control devices and comput-
ing nodes of a typical CPS. As such, PLCs often impose hard
real-time constraints to maintain the stability of the control sys-
tem in a CPS.

In the following sections, we define and discuss the notions
of real-time constraints and physical-state resiliency, which are
crucial in the design of CPS and will be used as benchmarks to
evaluate the efficiency and resilience of our mitigation strategy,
respectively.

3.2.1. Modeling real-time constraints
In general, PLCs undergo a cyclic process called scan cy-

cle. This involves three major operations: input scan, PLC pro-
gram (logic) execution and output update. The time it takes to

4

Figure 3: Overview of memory-safety attack exploitations

complete these operations is called scan time (Ts). A detailed
account of modeling Ts can be found in [43]. A typical CPS
defines and sets an upper-bound on time taken by the PLC scan
cycle, called cycle time (Tc). This means the scan cycle must
be completed within the duration of the cycle time specified,
i.e., Ts ≤ Tc. We refer this constraint as a real-time constraint
of the PLC. By design, PLCs meet this constraint. However,
due to additional overheads, such as memory-safety overheads
(MSO), PLCs might not satisfy its real-time constraint. As dis-
cussed above, by hardening the PLC with our memory-safety
protection (detection + mitigation), the scan time increases.
This increase in the scan time is attributed to the MSO. Con-
cretely, the memory-safety overhead is computed as follows:

MSO = T̂s − Ts, (1)

where T̂s and Ts are scan time with and without memory-safe
compilation, respectively.

It is crucial to check whether the induced MSO by the
memory-safe compilation still satisfies the real-time constraint
imposed by the PLC. To this end, we compute MSO for – 1)
average-case and 2) worst-case scenarios. In particular, after
enabling memory-safe compilation, we compute the scan time
(i.e. T̂s) for n different measurements and compute the respec-
tive average (i.e. mean(T̂s)) and worst-case (i.e. max(T̂s)) scan
time. Formally, we say that the MSO is acceptable in average-
case if the following condition is satisfied:∑n

i=1 T̂s(i)
n

≤ Tc (2)

where T̂s(i) captures the scan time for the i-th measurement af-
ter the memory-safe compilation.

In a similar fashion, MSO is acceptable in the worst-case
with the following condition:

n
max

i=1
T̂s(i) ≤ Tc (3)

3.2.2. Physical-state resiliency
The stability of CPS controllers (i.e. PLCs in our case) plays

a crucial role in enforcing the dynamics of a cyber-physical sys-
tem to be compliant with its requirement. For example, assume
that a PLC issues control commands every Tc cycle and an ac-
tuator receives these commands at the same rate. Therefore,
cycle time of the PLC is Tc. If the PLC is down for an arbitrary
amount of time say τ, then the actuator will not receive fresh
control commands for the duration τ. Consequently, the phys-
ical dynamics of the respective CPS will be affected for a total
of τ

Tc
scan cycles.

We note that the duration τ might be arbitrarily large. Ex-
isting solutions [9], albeit in a non-CPS environment, typically
revert to aborting the underlying process or restart the entire
system when a memory-safety attack is detected. Due to the
critical importance of availability constraints in CPS, our CIMA
approach never aborts the underlying system. Nevertheless,
CIMA induces an overhead to the scan time of the PLC, as dis-
cussed in the preceding section. Consequently, the scan time
of PLCs, with CIMA-enabled memory-safety (i.e. T̂s), may in-
crease beyond the cycle time (i.e. Tc). In general, to accurately
formulate τ (i.e. the amount of downtime for a PLC), we need
to consider the following three mutually exclusive scenarios:

1. The system is aborted or restarted.
2. The system is neither aborted nor restarted and T̂s ≤ Tc. In

this case, there will be no observable impact on the phys-
ical dynamics of the system. This is because the PLCs,
despite having increased scan time, still meet the real-time
constraint Tc. Thus, they are not susceptible to downtime.

3. The system is neither aborted nor restarted and T̂s > Tc.
In this scenario, the PLCs will have a downtime of T̂s−Tc,
as the scan time violates the real-time constraint Tc.

Based on the intuitions mentioned in the preceding para-
graphs, we now formally define τ, i.e., the downtime of a PLC
as follows:

τ =

∆, system is aborted/restarted
0, T̂s ≤ Tc

T̂s − Tc, T̂s > Tc

(4)

where ∆ captures a non-deterministic threshold on the down-
time of PLCs when the underlying system is aborted or
restarted.

Example. As an example, let us consider the first process in
SWaT (discussed in Section 5.1). This process controls the
inflow of water from an external water supply to a raw water
tank. PLC1 controls this process by opening (with “ON” com-
mand) and closing (with “OFF” command) a motorized valve,
i.e., the actuator, connected with the inlet pipe to the tank. If
the valve is “ON” for an arbitrarily long duration, then the raw
water tank might overflow, often causing a severe damage to the
system. This might occur due to the PLC1 downtime τ, during
which, the control command (i.e. “ON”) computed by PLC1
may not change. Similarly, if the actuator receives the com-
mand “OFF” from PLC1 for an arbitrarily long duration, then

5

the water tank may underflow. Such a phenomenon will still
affect the system dynamics. This is because tanks from other
processes may expect raw water from this underflow tank. In
the context of SWaT, the tolerability of PLC1 downtime τ (cf.
Eq. (4)) depends on the physical state of the water tank (i.e.
water level) and the computed control commands (i.e. ON or
OFF) by PLC1. In the next section, we will formally introduce
this notion of tolerance, as termed physical-state resiliency, for
a typical CPS.

To formally model the physical-state resiliency, we will take
a control-theoretic approach. For the sake of simplifying the
presentation, we will assume that the dynamics of a typical
CPS, without considering the noise and disturbance on the con-
troller, is modeled via a linear-time invariant. This is formally
captured as follows (cf. Figure 1):

xt+1 = Axt + But (5)

yt = Cxt (6)

where t ∈ N captures the index of discretized time domain.
xt ∈ Rk is the state vector of the physical plant at time t, ut ∈

Rm is the control command vector at time t and yt ∈ Rk is the
measured output vector from sensors at time t. A ∈ Rk×k is the
state matrix, B ∈ Rk×m is the control matrix and C ∈ Rk×k is the
output matrix.

We now consider a duration τ ∈ R for the PLC downtime.
To check the tolerance of τ, we need to validate the physical
state vector xt at any discretized time index t. To this end, we
first assume an upper-bound ω ∈ Rk on the physical state vector
xt at an arbitrary time t. Therefore, to satisfy the physical-state
resiliency, xt must not exceed the threshold ω. In a similar fash-
ion, we define a lower-bound θ ∈ Rk on the physical state vector
xt.

With the PLC downtime τ, we revisit Eq. (5) and the state
estimation is refined as follows:

x′t+1 = Axt + But−1[[t, t + τ]] (7)

where x′t+1 ∈ Rk is the estimated state vector at time t + 1 and
the PLCs were down for a maximum duration τ. The notation
ut−1[[t, t + τ]] captures that the control command ut−1 was active
for a time interval [t, t +τ] due to the PLC downtime for a dura-
tion of τ. In Eq. (7), we assume, without loss of generality, that
ut−1 is the last control command received from the PLC before
its downtime.

Given the foundation introduced in the preceding paragraphs,
we say that a typical CPS (cf. Figure 1) satisfies physical-state
resiliency if and only if the following condition holds at an ar-
bitrary time index t:

θ ≤ x′t+1 ≤ ω

θ ≤ Axt + But−1[[t, t + τ]] ≤ ω (8)

Figure 4 illustrates three representative scenarios to show the
consequence of Eq. (8). If the downtime τ1 = 0, then ut (i.e.
control command at time t) is correctly computed and x′t+1 =

xt+1. If the downtime τ2 ∈ (1, 2], then the control command
ut will be the same as ut−1. Consequently, x′t+1 is unlikely to

t-1 t t+1

𝛕1 = 0
ut = ut-1
x’t+1=xt+1

PLC down

2 ≥ 𝛕2 > 1

ut = ut-1
x’t+1≠ xt+1

t+2

𝛕3 > 2

ut+1 = ut = ut-1
x’t+1≠ xt+1, x’t+2≠ xt+2

Discretized
time

0 1 2

Figure 4: Illustrating the impact of PLC downtime

be equal to xt+1. Finally, when downtime τ3 > 2, the control
command vector ut+i for i ≥ 0 will be the same as ut−1. As a
result, the estimated state vectors x′t+ j for j ≥ 1 will unlikely to
be identical to xt+ j.

4. CIMA: Countering Illegal Memory Accesses

CIMA is a mitigation technique designed to counter ille-
gal memory accesses at runtime. We first outline a high-level
overview and the key ingredients of our approach. Later in this
section, we discuss the specific implementation traits in more
detail.

4.1. Overview of CIMA

Objective
CIMA follows a proactive approach to mitigate memory-

safety attacks and thereby enhancing system availability and
physical-state resilience in CPS. The key insight behind CIMA
is to prevent any operation that attempts to illegally access
memory. We accomplish this by skipping (i.e. not executing)
those instructions that attempt to access memory illegally. For
example, consider the exploitation of a memory-safety attack
shown in Figure 3. With our CIMA approach, the attack will be
ceased at step 3 (i.e. “Trigger a memory-safety violation”) of
the exploitation process.

Workflow of CIMA
CIMA systematically manipulates the compiler-generated

control flow graph (CFG) to accomplish its objective, i.e., to
skip illegal memory accesses at runtime. CFG of a program,
specifically at GIMPLE [44] intermediate representation (IR)
level, is represented by a set of basic blocks having incoming
and outgoing edges. A basic block [45] is a straight-line se-
quence of code with only one entry point and only one exit, but
it can have multiple predecessors and successors. CIMA works
on a common intermediate representation, i.e., GIMPLE IR, of
the underlying code, thus making our approach applicable for
multiple high-level programming languages and low-level tar-
get architectures.

To manipulate the CFG, CIMA needs to instrument the set
of memory-access operations in such a fashion that they trig-
ger memory-safety violations at runtime. To this end, CIMA

6

Figure 5: A high-level architecture of CIMA

leverages off-the-shelf technologies, namely address sanitizers
(ASan). A high-level workflow of our entire approach appears
in Figure 5. The implementation of CIMA replaces the inef-
fective mitigation strategy (i.e. system abort) of ASan with an
effective, yet lightweight scheme. Such a scheme allows the
program control flow to jump to the immediately next instruc-
tion that does not exhibit illegal memory access. In such a fash-
ion, CIMA not only ensures high accuracy of memory-safety
attack mitigation, but also provides confidence in system avail-
ability and resilience. In the following section, we describe our
CIMA approach in detail.

4.2. Approach of CIMA

An outline of our CIMA approach appears in Algorithm 2.
As input, CIMA takes a function (in the GIMPLE format) in-
strumented by ASan. As output, CIMA generates a GIMPLE
function with memory-safety mitigation enabled. We note that
the modification is directly injected in the compiler workflow.
To this end, CIMA modifies the internal data structures of GCC
to reflect the changes of control flow. Specifically, CIMA ma-
nipulates the intermediate representation, which is often de-
rived in the static-single-assignment (SSA) form. To this end,
CIMA also ensures that the SSA form is maintained during the
manipulation, so as not to disrupt the compiler workflow. In
the following, we elaborate the four crucial steps of CIMA in

detail and discuss the specific choices taken during its imple-
mentation.

Algorithm 2: CIMA’s approach to ensure memory safety
Input: Function fun() with ASan Instrumentation
Output: Function funCIMA() with CIMA-enabled memory

safety
1 forall the basic block bb in fun() do
2 forall the instruction i instrumented by ASan in bb do
3 Let checkbb holds the memory-safety check condition

checki for instruction i in bb
4 Let abortbb be the basic block where control reaches to

when instruction i is illegal
5 Find target instruction Ti for instruction i
6 if (i and Ti reside in the same basic block bb){
7 tempbb := succ(bb)
8 /* split basic block */

9 Split bb into basic blocks ibb and Tbb

10 ibb holds instructions of bb up to i
11 Tbb holds instructions from Ti up to the end of bb
12 /* Modify control flow */

13 /* succ(bb) captures successor of bb */
14 succ(ibb) := {Tbb}

15 succ(checkbb) := {ibb,Tbb}

16 succ(Tbb) := tempbb

17 }

18 else{
19 /* Modify control flow */

20 Let Ti be in basic block Tbb

21 succ(checkbb) := (succ(checkbb) \ {abortbb}) ∪ {Tbb}

22 }

23 end
24 end

Capture memory access instructions: CIMA validates mem-
ory accesses at runtime to detect and mitigate illegal mem-
ory access instructions. To achieve this, CIMA combines a
compile-time code instrumentation and a runtime validity check
techniques. The code instrumentation includes instrumenting
memory addresses (via ASan) and memory access instructions
(via CIMA). As discussed in Section 2.2, the memory address
instrumentation creates the poisoned redzones around stack,
heap and global variables. Since these redzones are inaccessible
by the running program, any memory instruction, attempting to
access them at runtime will be detected as an illegal instruction.

To mitigate the potential illegal instructions, CIMA instru-
ments memory access instructions at compile-time. To this end,
CIMA captures memory access instructions from the ASan in-
strumented code. These instructions serve as the potential can-
didates for illegal instructions at runtime.

Compute target instruction: To prevent the execution of an
illegal memory access instruction i, CIMA computes its cor-
responding target instruction Ti. We note that the set of po-
tentially illegal instructions are computed via the technique as
explained in the preceding paragraph. The target instruction Ti

for an illegal instruction i is the instruction that will be executed
right after i is bypassed. The compile-time analysis of CIMA

7

generates an instrumented binary in such a fashion that if an il-
legal instruction i is detected at runtime, then i is bypassed and
control reaches target instruction Ti. If Ti is detected as ille-
gal too, then the successor of Ti will be executed. This process
continues until an instruction is found without illegal memory
access at runtime.

Computing the target instruction is a critical step in our
CIMA approach. The target instruction Ti is computed as the
successor of the memory access instruction i in the CFG. We
note that a potentially illegal instruction must access memory,
as the objective of CIMA is to mitigate memory-safety attacks.
At the GIMPLE IR-level, any memory access instruction has
a single successor. Such a successor can either be the next
instruction in the same basic block (see Figure 6) or the first
instruction of the successor basic block (see Figure 7). Since
CIMA works at the GIMPLE IR-level, it can identify the target
instruction Ti for any instruction i by walking through the static
control flow graph.

We modify the control flow graph in such a fashion that the
execution is diverted to Ti (i.e. the successor of i) at runtime
when instruction i is detected to be illegal at runtime.

Computing the target basic block: From the discussion in
the preceding paragraph, we note that the execution of memory
access instruction i is conditional (depending on whether it is
detected as illegal at runtime). In the case where the instruc-
tion exhibits an illegal memory access, a jump to the respective
target instruction Ti is carried out. However, it is not possible
to simply divert the execution flow to the target instruction Ti.
This needs to be accomplished via a systematic modification of
the original program CFG at compile-time. However, the mod-
ification of the CFG depends on the location of the illegal and
target instructions. There are two scenarios in this regard.

Scenario 1 is when the illegal instruction i and its respective
target instruction Ti reside in the same basic block (say bb). In
this case, since the execution of i is conditional, it is always
the first instruction of its holding basic block whereas the tar-
get instruction Ti appears as the next instruction in the basic
block bb (see Figure 6). However, it is not possible to make a
conditional jump to Ti within the same basic block bb, as this
breaks the structure of the control flow graph. Thus, to be able
to make a conditional jump to Ti, a target basic block (say Tbb),
that contains Ti as its head instruction, is created. In particular,
we split the basic block bb into two basic blocks – ibb and Tbb

(cf. Algorithm 2, Lines 9 – 11). ibb holds the potentially ille-
gal instruction i and Tbb holds the instructions of bb following
i, i.e., starting from the target instruction Ti and up to the last
instruction of bb. As such, control jumps to Tbb if instruction i
is detected as illegal at runtime.

Scenario 2 is when the illegal instruction i and its respective
target instruction Ti are located in different basic blocks in the
original CFG (see Figure 7), then there is no need to split any
basic block. In such a case, the target basic block Tbb will be
the basic block holding Ti as its first instruction. Therefore,
CIMA diverts the control flow to Tbb, should i exhibits an illegal
memory access at runtime.

Modify and maintain CFG: CIMA ensures the diversion of

control flow of the program whenever an illegal memory ac-
cess is detected. To accomplish such a twisted control flow,
CIMA directly modifies and maintains the CFG (cf. Algo-
rithm 2, Lines (14 – 16) and (21)), as explained in the pre-
ceding paragraph. Figure 6 and 7 illustrate excerpts of control
flow graphs that are relevant to the modification performed by
CIMA in scenario 1 and 2, respectively. In particular, the two
figures demonstrate how the control flow is systematically ma-
nipulated to guarantee the system availability, while still miti-
gating memory-safety attacks.

Figure 6 and 7 also illustrate the change in CFG when the
program is compiled without and with memory-safety. In the
former case, the figures demonstrate how memory-safety at-
tacks (such as code injection and code reuse attacks) divert the
execution flow of the memory access instruction i to the attacker
injected code or system modules to further synthesis their ex-
ploitation. In the later case, the figures demonstrate how the
ASan and CIMA instrumented program systematically modi-
fies the CFG to detect and mitigate the attacker’s attempt to
illegally divert the execution flow of instruction i.

In Figure 6 and 7, checki is the inserted conditional check by
ASan to identify illegal memory accesses in instruction i and
checkbb is the basic block holding checki. Similarly, abortbb is
a basic block in the ASan instrumented code to which control
jumps to if i exhibits illegal memory access. However, abortbb

is excluded in the CIMA’s modified CFG as control jumps to
the computed target basic block (Tbb) instead if i turns out to be
illegal.

Figure 6: Illustrating the change of CFG in scenario 1 (i.e. i and Ti reside
in same basic block) involving three cases: attacker diverted CFG (without
memory-safety), ASan instrumented CFG (preventing exploitation but crashing
execution) and CIMA instrumented CFG (preventing exploitation and continu-
ing execution).

4.3. Illustrative Example

Using CIMA, we detected and mitigated a global buffer over-
flow vulnerability on the firmware of OpenPLC controller (we
reported the vulnerability and a CVE ID has already been
assigned to it [46, 47]). A code fragment relevant to the
vulnerability is shown in Program 3. In Line 3, a buffer
“int memory[]” (with a buffer size of 1024) is declared in the
“glue generator.cpp” file. This buffer is also used in the “mod-
bus.cpp” file, enclosed within a for loop (Lines 19 – 30) under
the “mapUnusedIO()” function. In the loop, the memory write
operation “int memory[i] = &mb holding regs[i]” (Line 27)

8

Figure 7: Illustrating the change of CFG in scenario 2 (i.e. i and Ti reside in
different basic blocks) involving three cases: attacker diverted CFG (without
memory-safety), ASan instrumented CFG (preventing exploitation but aborting
execution) and CIMA instrumented CFG (preventing exploitation and continu-
ing execution)

writes data to the buffer. However, due to a coding error, this
operation exhibits a memory-safety violation. Such a violation
occurs in the 1024th iteration when the operation attempts to
write data beyond the buffer limit. CIMA successfully miti-
gates such memory-safety violation. This was possible as the
illegal memory access operation was bypassed in each iteration
starting from the 1024th iteration of the loop.

4.4. Validating CIMA
CIMA is designed to alter the original and potentially vul-

nerable program to prevent run-time exploitation. As such, it
modifies the original program semantics. In the following we
discuss potential consequences of changes in the original pro-
gram’s low-level semantics.

First, note that it is fair to assume that inputs that would
exploit a memory-safety vulnerability are outside the intended
original program semantics, and that their behaviour is thus not
specified. As such, CIMA does not modify the intended pro-
gram semantics for the set of sequences of inputs that do not
trigger a memory-safety violation. For all other inputs, it would
be acceptable to just interrupt program execution to prevent ex-
ploitation (as in the case of many memory-safe compilers, that
will throw some kind of run-time exception and crash). In our
context, however, we want to prevent the program from crash-
ing in order to guarantee higher levels of availability and thus
the interesting question is whether we can give guarantees in
this sense.

We distinguish then the following three fundamental cases,
when a modified program is run with a malicious (memory-
safety violating) input:

1. The modified program is able to finish the PLC scan cycle
before the real-time deadline. In this case, we have successfully
prevented exploitation while preserving the system’s availabil-
ity. According to our experiments, the behaviour exhibited by
the PLC will still be correct with respect to the specified con-
troller behaviour in most cases. This correctness can be nev-
ertheless verified at runtime by an orthogonal mechanism that
monitors input sensor values and the corresponding decision
made by the PLC, judging from the overall system behaviour
and network or historian values, for instance using physical in-
variants [37] or process models [38, 39, 40].

Program 3: The OpenPLC vulnerability
1 //————//glue generator.cpp————————–
2 #define BUFFER SIZE 1024
3 IEC UINT *int memory[BUFFER SIZE];
4 IEC UINT *int output[BUFFER SIZE];
5 .
6 .
7 //————//modbus.cpp————————————
8 #define MIN 16B RANGE 1024
9 #define MAX 16B RANGE 2047

10 #define MAX HOLD REGS 8192
11 IEC UINT mb holding regs[MAX HOLD REGS];
12 .
13 .
14 /* This function sets the internal OpenPLC buffers to */
15 /* point to valid positions on the Modbus buffer */
16 void mapUnusedIO() {
17 .
18 .
19 for(int i = 0; i <= MAX 16B RANGE; i++){
20 if (i <MIN 16B RANGE){
21 if (int output[i] == NULL){
22 int output[i] = &mb holding regs[i];
23 }

24 }

25 if (i >= MIN 16B RANGE && i <= MAX 16B RANGE
){

26 if (int memory[i - MIN 16B RANGE] == NULL){
27 int memory[i] = &mb holding regs[i];
28 }

29 }

30 }

31 }

2. The modified program is not able to finish the PLC scan
cycle before the real-time deadline. This situation can be caused
by either the modified program becoming non-terminating, or
because the modified terminates, but because of the modifica-
tion, ends up executing prohibitively slow. It is possible to
construct programs where this situation could arise. For ex-
ample, Program 4 shows a case where the loop bound (Line 5)
is dependent on an attacker controlled input x. We note that
the value of x determines whether the memory read instruction
arr[x] is legal or not. CIMA skips the access to arr[x] should
it turns out to be illegal. This could lead to premature abortion
of the loop (e.g. if arr[x] is detected as illegal before the loop
starts). Consider a different scenario when the the loop counter
i is incremented by arr[z] (cf. Program 4, Line 8). Assuming z
can be controlled by the attacker, arr[z] might manifest illegal
memory access. Thus, CIMA bypasses the respective memory
access and the value of i remains unchanged. This leads to an
execution that never terminates.

These corner cases could occur when a false data injection
attack manages to control the loop bound and loop counter of a
for loop. However, we believe such cases are rather pathologi-
cal and that in practice it will be very hard for attackers to tailor
their inputs to cause this behaviour. Providing loop bound and

9

loop counter values via attacker controlled memory accesses
is also certainly considered as a bad coding practice. In fact,
the occurrence of such corner cases could result in an unde-
sirable outcome (e.g. program crash) even in the absence of
CIMA. Also, it is probably easier for attackers to resort to more
generic DoS attacks such as flooding than crafting such inputs,
although more work in this direction is left for the future. In
this situation, to ensure availability, it would be necessary to
devise mechanisms to either roll-back to a safe-state and ignore
malicious inputs or other countermeasures. Note that however,
it is fairly easy to detect such cases by considering the normal
execution profile of the PLC (which is usually much faster than
the real-time deadline) and raising appropriate alarms. In par-
ticular, false data injection attacks can be also prevented via
orthogonal means [48].

3. When a variable is dependent on the output of a memory
access instruction. For example, in Program 4, Line 7, vari-
able y is dependent on the output of memory access instruction
arr[i]. If the access arr[i] is found to be illegal, CIMA skips it
and the variable assignment, i.e., y = arr[i], will be also skipped
as a side-effect. In this case, y preserves the last “legally” as-
signed value to it. Otherwise, variable y preserves its initial
value if the access arr[i] is detected as illegal at the beginning
(i.e. at index i = 0).

We also take some careful considerations when implement-
ing CIMA. Concretely, we ensure that the implementation of
CIMA is not affected by lower level compiler optimizations.
CIMA does not also have any impact on the work flow of the
compiler back-end. Concurrently, the modified compiler flow
does not influence the execution of programs without any mem-
ory access violation.

In sum, we believe that CIMA can significantly increase the
resilience of CPS against attacks that are focused on memory-
safety exploitation. Since such countermeasures are not com-
mon in CPS today, this will prevent many realistic attacks. If
attackers are aware of countermeasures such as CIMA, it is
thinkable that they would also attempt to craft more sophisti-
cated attacks against availability, but this is left for future study.

Program 4: Attacker controlled loop bound and counter
1 main() {
2 int arr[100], i, x, y, z;
3 printf(“Enter the value of x and z:”);
4 scanf(“%d %d”, &x, &z);
5 for(i=0; i <arr[x];){
6 // Do something
7 y = arr[i]; //Variable assignment
8 i += arr[z]; //Incrementing the loop counter
9 }

10 return 0;
11 }

4.5. Implementation challenges

ASan instruments memory addresses to detect illegal mem-
ory access instructions and it aborts the program upon detection

of illegal memory accesses, which affects availability of the sys-
tem. In our CIMA approach, we make the observation that we
can react to such violations by bypassing the illegal instruc-
tions, and thus favoring availability of the system. However,
unlike aborting the vulnerable program (which can be achieved
by simply calling the abort() library function), skipping only
illegal memory access instructions and keeping the rest of the
execution alive is not a straightforward task. As such, we face
several technical challenges to realize the aforementioned intu-
ition behind CIMA. Firstly, it is infeasible (in general) to stati-
cally compute the exact set of illegal memory accesses in a pro-
gram. Consequently, a fully static approach, which modifies the
program to eliminate the illegal instructions from the program,
is unlikely to be effective. Moreover, such an approach will
inevitably face scalability bottlenecks due to its heavy reliance
on sophisticated program analysis. Secondly, even if the ille-
gal instructions are identified during execution, it is challeng-
ing to bypass the manifestation of illegal memory access. This
is because, such a strategy demands full control to manipulate
the normal flow of program execution. Finally, to bypass the
execution of certain instructions, we need modifications to the
control flow of the program, which involves the manipulation
of program control flow over several compilation passes.

To overcome the technical challenges, we implement CIMA
by modifying the GCC middle-end, i.e., GIMPLE IR level,
where the CFG is represented by a set of basic blocks (con-
sisting of a sequence of instructions). The compiler middle-end
is modified in such a way that the modified compiler produces a
new CFG (for a given program) according to the modifications
outlined in Figures 6 and 7. This newly formed CFG will then
aid to skip instructions, which exhibit illegal memory accesses,
via a conditional jump.

In summary, unlike ASan, CIMA exclusively instruments
memory access instructions to bypass those instructions ex-
hibiting memory access violations. The rest of the execution,
nevertheless, continues without interruption. To the best of our
knowledge, there is no any existing strategy that skips illegal
memory access instructions without aborting or interrupting ex-
ecution of the victim program.

5. Experimental Design

5.1. SWaT

SWaT [49] is a fully operational water purification testbed
for research in the design of secure cyber-physical systems. It
produces five gallons/minute of doubly filtered water. In the
following, we discuss some salient features and design consid-
erations of SWaT.

5.1.1. Purification process
The entire water purification process is carried out by six dis-

tinct, yet co-operative, sub-processes. Each sub-process is con-
trolled by an independent PLC (indexed from PLC1 through
PLC6). Specifically, PLC1 controls the first sub-process, i.e.,
the inflow of water from external supply to a raw water tank, by

10

opening and closing the motorized valve connected with the in-
let pipe to the tank. PLC2 controls the chemical dosing process,
e.g., water chlorination, where appropriate amount of chlorine
and other chemicals are added to the raw water. PLC3 controls
the ultrafiltration (UF) process. PLC4 controls the dechlorina-
tion process where any free chlorine is removed from the water
before it is sent to the next stage. PLC5 controls the reverse
osmosis (RO) process where the dechlorinated water is passed
through a two-stage RO filtration unit. The filtered water from
the RO unit is sent in the permeate tank, where the recycled wa-
ter is stored, and the rejected water is sent to the UF backwash
tank. In the final stage, PLC6 controls the cleaning of the mem-
branes in the UF backwash tank by turning on and off the UF
backwash pump. The overall purification process of SWaT is
shown in Figure 8 (more details can be found in [50]).

5.1.2. Components and specifications
The design of SWaT consists of the following components

and system specifications:

• PLCs: six redundancy real-world PLCs (Allen Bradley
PLCs) to control the entire water purification process. The
PLCs communicate one another or with the SCADA sys-
tem through EtherNet/IP or common industrial protocol
(CIP).

• Remote input/output (RIO): SWaT also consists of re-
mote input/output terminals containing digital inputs (DI),
digital outputs (DO) and analog inputs (AI) for each PLC.
The RIO of SWaT consists of 32 DI (water level and pres-
sure switches), 13 AI (flow rate, water pressure and water
level sensors), and 16 DO (actuators such as pumps and
motorized valves).

• PLC program: SWaT has a complex PLC program (con-
trol software) written in ladder logic. It comprises various
instructions such as boolean operators, arithmetic opera-
tors, comparison operators, conditional statements, coun-
ters, timers, contacts, and coils (see the full list on Table
1). The most complex PLC of SWaT (i.e. PLC2) has a
PLC program containing 129 instructions.

• SCADA system: a touch panel is mounted to SWaT for
providing users a local system supervisory, monitoring and
control. It also displays state information of plants, sen-
sors, actuators and operational status of PLCs to users.

• Operation management: consisting of historian server
(for storing all operating data, alarm history and events)
and engineering workstation (designed to provide all nec-
essary control graphics).

• Real-time constraint: the cycle time or real-time con-
straint of SWaT is 10ms. The notion of real-time con-
straint (in the context of CPS) is discussed in detail on
Section 3.2.

• Communication frequency: the six PLCs communicate
each other and with the SCADA system depending on op-
erational conditions. Considering the most complex PLC

(with 129 instructions), it send as high as 382 packets per
second to its most active peer or as low as three packets
per second to another peer. Considering connections with
all devices in SWaT, we estimate that the most complex
PLC has a send over receive request ratio of 1000 packets
per second.

Concurrently, SWaT is based on closed-source and propri-
etary Allen Bradely PLCs. Hence, it is not possible to directly
modify the firmware of these PLCs and to enforce memory-
safety solutions. To alleviate this problem in our experimen-
tal evaluation, an open platform, named Open-SWaT, was de-
signed.

5.2. Open-SWaT
Open-SWaT is a mini CPS we designed using OpenPLC con-

troller [51] – an open source PLC designed for industrial control
and cyber-physical systems. A high-level architecture of Open-
SWaT is shown in Figure 9. The main purpose of designing
Open-SWaT was to employ our CIMA approach on a realistic
CPS. With Open-SWaT, we reproduce features and operational
behaviours of SWaT. In particular, we reproduce the main fac-
tors that have substantial effect on the scan time and MSO of
PLCs. Some salient features of the Open-SWaT design are dis-
cussed as follows.

1. PLCs: The PLCs of Open-SWaT are designed using
OpenPLC controller that runs on a Raspberry PI using
Linux operating system. To replicate the hardware spec-
ifications of the PLCs in SWaT, we configured 200MHz
fixed CPU frequency and 2Mb user memory for the PLCs
used in Open-SWaT.

2. Remote Input/Output (RIO): Arduino Mega has been
used as the RIO terminal in Open-SWaT. It has an AVR-
based processor with a clock rate of 16MHz. It consists
of 86 I/O pins that can be directly connected to different
I/O devices. To replicate the number of input and outputs
in SWaT, we used 32 digital inputs (DI) (switches, push-
buttons and scripts), 13 analog inputs (AI) (ultrasonic and
temperature sensors) and 16 digital outputs (DO) (light
emitter diodes or LEDs, in short).

3. PLC program: We designed a control program written
in ladder logic. It has similar complexity with the one in
SWaT. A sample of the logic diagram is shown in Figure
10. The control program consists of several types of in-
structions such as 1) logical: AND, OR, NOT, SR (set-
reset latch); 2) arithmetic: addition (ADD), multiplica-
tion (MUL); 3) comparisons: equal-to (EQ), greater-than
(GT), less-than (LT), less-than-or-equal (LE); 4) counters:
up-counter (CTU), turn-on timer (TON), turn-off timer
(TOF); 5) contacts: normally-open (NO) and normally-
closed (NC); and 6) coils: normally-open (NO) and
normally-closed (NC). The overall control program con-
sists of 129 instructions in total; details are shown on Ta-
ble 1.

4. Communication frequency: The communication archi-
tecture of Open-SWaT (as illustrated in Figure 9) con-
sists of analogous communicating components with that

11

Figure 8: Overview of the water purification process of SWaT
Definition of the acronyms: S = Sensor, A = Actuator, T = Tank, P = Process, MV = Motorized Valve, LIT = Level Indicator Transmitter, FIT = Flow Indicator
Transmitter, DPIT = Differential Pressure Indicator Transmitter.

of SWaT. Open-SWaT uses both types of modbus proto-
cols – modbus TCP (for wired or wireless communication)
and modbus RTU (for serial communication). The com-
munication among PLCs is via modbus TCP or modbus
RTU whereas the communication between PLCs and the
SCADA system is via modbus TCP. Frequency of com-
munication among PLCs and the SCADA system is sim-
ilar to that in SWaT. The communication between PLCs
and Arduino is via the USB serial communication. The
communication frequency between Arduino and sensors
is 100Hz.

5. Real-time constraint: Since the cycle-time (real-time
constraint) of SWaT is 10ms, we also set 10ms cycle time
to each PLC in Open-SWaT.

6. SCADA system: We use ScadaBR [52], a full SCADA
system consisting of web-based HMI, for Open-SWaT.

5.3. SecUTS

The Secure Urban Transportation System (SecUTS) is a CPS
testbed designed to research on the security of a Metro SCADA
system. The Metro SCADA system [53] comprises an Inte-
grated Supervisory Control System (ISCS) and a train signaling
system. ISCS integrates localized and centralized control and
supervision of mechanical and electrical subsystems located at
remote tunnels, depots, power substations and passenger sta-
tions. The entire Metro system can be remotely communicated,
monitored, and controlled from the operation control center via
the communication network. On the other hand, the signal-
ing system facilitates communications between train-borne and
track-side controllers. It also controls track-side equipments
and train position localization. Modbus is used as a commu-
nication protocol among the devices in the ISCS. A detailed
account of the Metro SCADA can be found on [53].

Figure 9: Architecture of Open-SWaT

The SecUTS testbed provides facilities to examine several
types of cyber attacks, such as message replay, forged mes-
sage and memory-safety attacks, in the ISCS system and en-
force proper countermeasures against such attacks. However,
the SecUTS testbed is also based on closed-source proprietary
Siemens PLCs, hence we cannot directly enforce CIMA to
these PLCs to detect and mitigate memory-safety attacks. Con-
sequently, we similarly designed Open-SecUTS testbed (by
mimicking SecUTS) using OpenPLC controller. It consists of 6
DI (emergency and control buttons) and 9 DO (tunnel and sta-
tion lightings, ventilation and alarms) and a cycle time of 30ms.
Subsequently, we enforced CIMA to Open-SecUTS and evalu-
ated its practical applicability in a Metro SCADA system (cf.
Section 6).

12

Figure 10: Sample PLC program in ladder diagram

6. Evaluation

We discuss a detailed evaluation of our CIMA approach on
Open-SWaT and Open-SecUTS. Subsequently, we discuss the
experimental results to figure out whether our proposed ap-
proach is accurate enough to detect and mitigate memory-safety
violations. We also discuss the efficiency of our approach in the
context of CPS environment. In brief, we evaluate the proposed
approach along four dimensions: 1) Security guarantees – de-
tection and mitigation accuracy of the proposed approach 2)
Performance – tolerability of the runtime overhead of the pro-
posed security measure in CPS environment, 3) Resilience – its
capability to ensure system availability and maintain physical-
state resiliency in CPS even in the presence of memory-safety
attacks, and 4) its Memory usage overheads.

6.1. Security guarantees

To stress test the accuracy of our approach, we have eval-
uated CIMA against a wide-range of memory-safety vulnera-
bilities. This is to explore the accuracy of mitigating memory-
safety vulnerabilities by our CIMA approach. As our CIMA
approach is built on top of ASan, it is crucial that ASan de-
tects a wide-range of memory-safety vulnerabilities accurately.
According to the original results published for ASan [9], it
detects memory-safety violations with high-accuracy – with-
out false positives for vulnerabilities such as (stack, heap and
global) buffer under/overflows, use-after-free errors (dangling
pointers), use-after-return errors, initialization order bugs and
memory leaks. Only rare false negatives may appear for global
buffer overflow and use-after-free vulnerabilities due to the ex-
ceptions discussed in [9].

CIMA effectively mitigates memory-safety violations, given
that such a violation is detected by ASan at runtime. Therefore,
the mitigation accuracy of our CIMA approach is exactly the
same as the detection accuracy of ASan.

Table 1: Complexity of the SWaT PLC program

Instruction(s) Type count
AND Logical 17
OR Logical 14
NOT Logical 5
SR Logical 1
ADD Arithmetic 1
MUL Arithmetic 2
EQ , GT Comparison 6
LT , LE Comparison 4
TON Timers 3
TOF Timers 9
CTU Counters 1
SEL, MAX Selection 2
NO Contacts 38
NC Contacts 3
NO Coils 21
NC Coils 2
Total 129

As discussed in detail on Section 4.2, we discovered a global
buffer overflow vulnerability in the OpenPLC firmware [46].
The vulnerability was successfully mitigated by our CIMA ap-
proach. Besides, throughout our evaluation, we did not discover
any false positives or negatives in mitigating all the memory-
safety violations detected by ASan.

6.2. Efficiency

According to the original article published for ASan [9], the
average MSO of ASan is 73%. However, all measurements
were taken on benchmarks different from ours and more impor-
tantly, in a non-CPS environment. With our CPS environment
integrated in the Open-SWaT and Open-SecUTS, the average
performance overhead induced by ASan is 53.46% and 50.4%,
respectively. Additionally, our proposed CIMA approach in-
duces 8.06% and 6.53% runtime overheads on Open-SWaT and
Open-SecUTS, respectively. Thus, the overall runtime over-
head of our security measure is 61.52% (for Open-SWaT) and
56.93% (for Open-SecUTS). A more detailed performance re-
port, including the performance overhead of each PLC opera-
tion in both testbeds, is illustrated on Table 2 and 3.

It is crucial to check whether the induced overhead by ASan
and CIMA (T̂s) is tolerable in a CPS environment. To this end,
we evaluate if this overhead respects the real-time constraints
of SWaT and SecUTS. For instance, consider the tolerability in
average-case scenario. We observe that our proposed approach
satisfies the condition of tolerability, as defined in Eq. (2). In
particular, from Table 2, mean(T̂s) = 441.72µs, and Tc = 10ms;
and from Table 3, mean(T̂s) = 398.39µs, and Tc = 30ms. Con-
sequently, Eq. (2) is satisfied and the overhead induced by our
CIMA approach is both tolerable in SWaT and SecUTS.

Similarly, considering the worst-case scenario, we evaluate
if Eq. (3) is satisfied. From Table 2, max(T̂s) = 3167.15µs, and
Tc = 10ms; and from Table 3, max(T̂s) = 2506.39µs, and Tc =

13

Table 2: Memory-safety overheads for the Open-SWaT Testbed

Operations
Number
of cycles

Network
devices

CPU speed
(in MHz)

Original (Ts) ASan(T ′s) ASan + CIMA (T̂s)
mean(Ts)
(in µs)

max(Ts)
(in µs)

mean(T ′s)
(in µs)

max(T ′s)
(in µs)

MSO
(in µs)

MSO
(in %)

mean(T̂s)
(in µs)

max(T̂s)
(in µs)

MSO
(in µs)

MSO
(in %)

Input scan 50000 6 200 59.38 788.12 118.44 1132.32 59.06 99.46 122.86 1151.35 63.48 106.9
Program exec. 50000 6 200 69.09 611.82 115.88 720.36 46.79 67.72 118.97 802.18 49.88 72.2
Output update 50000 6 200 145.01 981.09 185.37 1125.45 40.36 27.83 199.89 1213.62 54.88 37.85
Full scan time 50000 6 200 273.48 2381.03 419.69 2978.13 146.21 53.46 441.72 3167.15 168.24 61.52

Table 3: Memory-safety overheads for the Open-SecUTS Testbed

Operations
Number
of cycles

Network
devices

CPU speed
(in MHz)

Original (Ts) ASan(T ′s) ASan + CIMA (T̂s)
mean(Ts)
(in µs)

max(Ts)
(in µs)

mean(T ′s)
(in µs)

max(T ′s)
(in µs)

MSO
(in µs)

MSO
(in %)

mean(T̂s)
(in µs)

max(T̂s)
(in µs)

MSO
(in µs)

MSO
(in %)

Input scan 50000 1 200 59.84 739.94 114.88 902.01 55.04 91.98 115.07 906.09 55.23 92.3
Program exec. 50000 1 200 48.56 488.38 91.36 443.61 42.8 88.14 104.41 676.19 55.85 115.01
Output update 50000 1 200 145.47 850.62 175.59 1045.34 30.12 20.71 178.91 924.11 33.44 22.99
Full scan time 50000 1 200 253.87 2078.94 381.83 2390.96 127.96 50.4 398.39 2506.39 144.52 56.93

30ms. It is still tolerable, thus the proposed security measure
largely meets the real-time constraints of SWaT and SecUTS in
both scenarios (See the tolerability gap for SWaT and SecUTS
(in the worst-case scenario) in Figure 11 and 12, respectively).
Therefore, despite high security guarantees provided by CIMA,
its overhead is still tolerable in a CPS environment.

Figure 11: Tolerability of the worst-case overhead for Open-SWaT testbed

Table 4: Memory usage overheads for the Open-SWaT Testbed

Category Original ASan ASan+CIMA
Original Overhead Original Overhead

Virtual
Memory 62.97MB 549.38MB 8.72× 557.5MB 8.85×

Real
Memory 8.17MB 10.31MB 1.26× 11.2MB 1.37×
Binary 144KB 316KB 2.19× 324KB 2.25×
Shared
library 3196KB 4288KB 1.34× 4288KB 1.34×

Figure 12: Tolerability of the worst-case overhead for Open-SecUTS testbed

6.3. Resilience

One of the main contributions of our work is to empirically
show the resilience of our CIMA approach against memory-
safety attacks. Here, we evaluate how our mitigation strategy
ensures availability and physical-state resiliency of a real-world
CPS. As discussed in the preceding sections, CIMA does not
render system unavailability. This is because it does not abort
or restart the PLC when mitigating memory-safety attacks. In
such a fashion, the availability of PLCs is ensured by our ap-

Table 5: Memory usage overheads for the Open-SecUTS Testbed

Category Original ASan ASan+CIMA
Original Overhead Original Overhead

Virtual
Memory 56.37MB 489.29MB 8.68× 490.6MB 8.70×

Real
Memory 8.76MB 9.81MB 1.12× 10.21MB 1.17×
Binary 136KB 288KB 2.12× 296KB 2.18×
Shared
library 3196KB 4288KB 1.34× 4288KB 1.34×

14

proach. As discussed in Section 3.2.2, physical-state resiliency
of a CPS can be affected by the memory-safety overhead (when
the overhead is not tolerable due to the real-time constraint of
the PLC) or the downtime of the PLC (when the PLC is un-
available for some reason).

In the preceding section, we showed that the overall over-
head is tolerable, i.e., T̂s ≤ Tc. Hence, the additional overhead
induced by ASan and CIMA does not affect the physical-state
resiliency. Added to the fact is that the availability of SWaT and
SecUTS is also ensured by CIMA via its very construction, as
CIMA never aborts the system or leads to PLC downtime. That
means, the downtime (i.e. τ) is zero, hence Eq. (8) is satisfied.
This then ensures physical-state resiliency. This makes CIMA
to be a security solution that ensures availability and maintains
resilience of the CPS even in the presence of memory-safety
attacks.

6.4. Memory usage overheads
Finally, we evaluated the memory usage overheads of our

CIMA approach. Tables 4 and 5 summarize the increased vir-
tual memory usage, real memory usage, binary size and shared
library usage for the Open-SWaT and Open-SecUTS testbeds,
respectively. The reported statistics are collected by reading
VmPeak, VmRSS, VmExe and VmLib fields, respectively, from
/proc/self/status. In general, we observe a significant increase
in virtual memory usages (8.85× for Open-SWaT and 8.70×
for Open-SecUTS). This is primarily because of the allocation
of large redzones with malloc (as part of the ASan approach).
However, the real memory usage overhead is only 1.37× (for
Open-SWaT) and 1.17× (for Open-SecUTS). We believe these
overheads are still acceptable since most PLCs nowadays come
with at least 1GB memory size. Moreover, the increased mem-
ory size is an acceptable trade-off in the light of strong mitiga-
tion mechanics provided by our CIMA approach. Finally, we
observe that CIMA introduces negligible memory usage over-
head over ASan, meaning the majority of memory-usage over-
head is attributed to the usage of ASan.

7. Related work

CIMA is built on top of ASan [9]. The classic version of
ASan covers a wide range of temporal memory errors, such as
use-after-free, use-after-return and memory leaks, and spatial
memory errors such as stack, heap and global buffer overflows.
However, in contrast to CIMA, ASan does not provide any mit-
igation (from the point of view of availability) against memory
safety attacks.

Widespread system-based countermeasures against memory-
safety attacks, such as stack canaries [54, 55], address space
layout randomization (ASLR) [56, 57, 58], position inde-
pendent execution (PIE) [59], non-executable memory page
(NX) [60], etc., are also not designed to guarantee availabil-
ity but to prevent other exploits, and have also been challenged
by recent attack techniques such as return oriented program-
ming [61, 7].

Softbound [18] and its extension CETS [19] guarantee a
complete memory-safety. However, such guarantees arrive with

the cost of a very high runtime overhead (116%). Such a high
overhead is unlikely to be tolerable for the real-time constraints
imposed on CPS. Moreover, Softbound and CETS do not im-
plement a mitigation strategy to consider the physical-state re-
siliency in a CPS context. A different work, named SafeDis-
patch [12] imposes much lower overhead (2.1%) in contrast
to Softbound and CETS, yet does not provide any mitigation
against memory-safety attacks.

Rinard et al. [13] developed “failure-oblivious computing”,
which allows a vulnerable program to continue execution even
in the presence of memory errors. To achieve this, manufac-
tured values were returned for invalid reads and invalid writes
were simply discarded. However, this approach has several lim-
itations. First, providing a fabricated value is not acceptable
and might lead to serious consequences for CPS. For exam-
ple, providing fabricated sensor inputs to the PLC may mis-
lead the PLC to issue incorrect control commands which will
eventually affect the CPS dynamics. Furthermore, these fabri-
cated values may also determine branches or loop conditions
and may lead the program to an unexpected state. Secondly,
the “failure-oblivious computing” technique is designed only
against buffer overflow vulnerabilities; it does not cover other
critical memory-safety vulnerabilities. Finally, this technique
is designed for mainstream systems, such as Servers, hence its
applicability in the CPS environment was never validated.

Sting [25, 26] is an end-to-end self-healing architecture de-
veloped against memory-safety attacks. However, as its archi-
tecture is based on address space layout randomization (ASLR)
and system-call-based anomaly detection, the provided defense
can be bypassed via code-reuse attacks and data injection at-
tacks. Moreover, Sting employs periodic check-pointing to
resume the victim program from an earlier safe state. This,
in turn, induces high performance and memory usage over-
head [25], leading to unavailability of the system. As reported
in [25], there are also cases where the corrupted program cannot
be recovered and restarting the program is required. Because of
these limitations, the applicability of Sting in a CPS environ-
ment is limited.

SafeDispatch [12] is a fast memory-safety tool developed
within the LLVM infrastructure. SafeDispatch also involves ex-
haustive performance optimizations to make the overhead just
2.1%. However, SafeDispatch is not supported by an appropri-
ate mitigation strategy that guarantees system availability in the
presence of memory-safety attacks.

ROPocop [14] is a dynamic binary code instrumentation
framework against code injection and code reuse attacks. It re-
lies on Windows x86 binaries to detect such attacks, hence not
applicable on Linux-based systems. It also introduces a high
runtime overhead of 240%, which is unlikely be tolerable for
the hard real-time constraints in CPS. Moreover, there is no de-
nial of service mitigation strategy presented with this solution.

Over the past decades, a number of control-flow integrity
(CFI) based solutions (e.g., [15, 16, 17]) have been developed
to defend against memory-safety attacks. The main objective
behind these solutions is ensuring the control-flow integrity of
a program. Therefore, they aim to prevent attacks from redi-

15

recting the flow of program execution. These solutions also of-
fer a slight performance advantage over other countermeasures,
such as code-instrumentation based countermeasures. How-
ever, CFI-based solutions generally have the following limita-
tions: (i) determining the required control-flow graph (often us-
ing static analysis) is difficult and requires a substantial amount
of memory; (ii) attacks that are not diverting the control-flow of
the program cannot be detected (e.g. data oriented attacks [62]);
(iii) finally, these solutions are only to detect memory-safety at-
tacks, but does not provide any mitigation strategy to ensure
system availability.

ECFI [24] is a control-flow based strategy developed against
control-flow hijacking attacks. It effectively detects memory-
safety attacks with low overhead. However, it is a passive sys-
tem and cannot detect memory-safety attacks proactively. Since
it is also a CFI-based solution, it suffers from the limitations
discussed in the preceding paragraph. Specifically, it only of-
fers detection of memory-safety attacks. However, in contrast
to our work, ECFI does not mitigate these attacks to improve
availability of the system.

The introduction of just-In-Time (JIT) compilers is a hybrid
interpretation/compilation technique enhancements in program
execution time. However, it also brings security risks as JIT
compilers rely on writable memory where it places dynamically
generated code [63]. This principle of JIT conflicts/clashes
against the already established (system-based) countermeasures
against code injection attacks, such as non-executable memory
(NX) [60] or data execution protection (DEP) countermeasures.

In order to coexists with such system-based countermea-
sures, programmers using JIT often need to bypass them by
manually allowing execution of code in memory pages with
write access for instance, opening the door to attacks. There-
fore, memory protection mechanisms for JIT compilers [63],
[64], [65] focus on mantaining a balance between security and
JIT, with a focus on preventing code injection attacks. Our so-
lution differs from those approaches in that we are focused on
guaranteeing availability while preventing exploitation, and as
such go beyond access control strategies in memory regions and
have to deal with a (security motivated) modification of the con-
trol flow of the application when under attack.

In summary, to the best of our knowledge, there is no prior
work that efficiently detects and mitigates memory-safety at-
tacks without compromising the real-time constraints or avail-
ability of the underlying system. In this paper, CIMA provides
a practical solution to bridge this gap in the research.

8. Conclusion

In this paper, we propose CIMA, a resilient mitigation strat-
egy to ensure protection against a wide variety of memory-
safety attacks. The main advantage of CIMA is that it mitigates
memory-safety attacks in a time-critical environment and en-
sures the system availability by skipping only the instructions
that exhibit illegal memory accesses. To this end, we evalu-
ate our approach on a real-world CPS testbeds. Our evaluation
reveals that CIMA mitigates memory-safety errors with accept-
able runtime and memory-usage overheads. Moreover, it en-

sures that the resiliency of the physical states are maintained
despite the presence of memory-safety attacks. Although we
evaluated our approach only in the context of CPS, CIMA is
also applicable and useful for any system under the threat of
memory-safety attacks.

In future, we plan to build upon our approach to understand
the value of CIMA across a variety of systems beyond CPS. We
also plan to leverage our CIMA approach for live patching. In
particular, at its current state, CIMA does not automatically fix
the memory-safety vulnerabilities of the victim code (although
CIMA does ensure that the vulnerabilities are not exploited by
an attacker at runtime). Instead, it generates a report for the
developer to help produce a patched version of the code. In fu-
ture, we will use the report generated by CIMA to automatically
identify the pattern of illegal memory accesses and fix the code
accordingly. As a compile-time tool, the current state of CIMA
is dependent on the availability of the source code to mitigate
memory-safety attacks. Therefore, binary instrumentation with
CIMA is left as a future work.

Acknowledgment

This work was supported by the National Research Foun-
dation (NRF), Prime Minister’s Office, Singapore, under
its National Cybersecurity R&D Programme (Award No.
NRF2014NCR-NCR001-31) and administered by the National
Cybersecurity R&D Directorate. This work was also partially
supported by the Ministry of Education of Singapore under the
grant MOE2018-T2-1-098

References

[1] L. Szekeres, M. Payer, T. Wei, D. Song, Sok: Eternal war in memory,
IEEE Symposium on Security and Privacy (2013).

[2] T. Saito, R. Watanabe, S. Kondo, S. Sugawara, M. Yokoyama, A survey
of prevention/mitigation against memory corruption attacks, in: Interna-
tional Conference on Network-Based Information Systems (NBiS), 2016.

[3] Y. Younan, W. Joosen, F. Piessens, Code injection in c and c++ : A survey
of vulnerabilities and countermeasures, Tech. rep. (2004).

[4] A. Francillon, C. Castelluccia, Code injection attacks on harvard-
architecture devices, in: Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS’08), 2008. doi:10.

1145/1455770.1455775.
[5] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,

A. Sadeghi, Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization, in: Proceedings of the IEEE Sym-
posium on Security and Privacy (SP’13), Washington, USA, 2013. doi:
10.1109/SP.2013.45.

[6] J. Dahse, N. Krein, T. Holz, Code reuse attacks in php: Automated pop
chain generation, in: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS’14), 2014.

[7] A. Bittau, A. Belay, A. Mashtizadeh, D. Maziéres, D. Boneh, Hacking
blind, in: Proceedings of the 2014 IEEE Symposium on Security and
Privacy, SP’14, 2014.

[8] E. G. Chekole, J. H. Castellanos, M. Ochoa, D. K. Y. Yau, Enforcing
memory safety in cyber-physical systems, in: Katsikas S. et al. (eds)
Computer Security. SECPRE 2017, CyberICPS 2017, 2017.

[9] K. Serebryany, D. Bruening, A. Potapenko, D. Vyukov, Addresssanitizer:
a fast address sanity checker, in: Proceedings of the USENIX conference
on Annual Technical Conference (USENIX ATC’12), 2012.

[10] E. G. Chekole, S. Chattopadhyay, M. Ochoa, G. Huaqun, Enforcing full-
stack memory safety in cyber-physical systems, in: Proceedings of the

16

https://doi.org/10.1145/1455770.1455775
https://doi.org/10.1145/1455770.1455775
https://doi.org/10.1109/SP.2013.45
https://doi.org/10.1109/SP.2013.45

International Symposium on Engineering Secure Software and Systems
(ESSoS’18), 2018.

[11] L. Hu, N. Xie, Z. Kuang, K. Zhao, Review of cyber-physical
system architecture, in: IEEE 15th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, 2012.

[12] D. Jang, Z. Tatlock, S. Lerner, Safedispatch: Securing c virtual calls from
memory corruption attacks, Proceedings 2014 Network and Distributed
System Security Symposium (2014).

[13] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, W. S. Beebee, Jr.,
Enhancing server availability and security through failure-oblivious com-
puting, in: Proceedings of the 6th Conference on Symposium on Opeart-
ing Systems Design & Implementation - Volume 6, OSDI’04, 2004.

[14] A. Follner, E. Bodden, Ropocop — dynamic mitigation of code-reuse
attacks, Journal of Information Security and Applications (2016).

[15] M. Zhang, R. Sekar, Control flow integrity for cots binaries, in: Proceed-
ings of the USENIX Security Symposium (USENIX’13), 2013.

[16] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, G. Pike, Enforcing forward-edge control-flow integrity in
gcc & llvm, in: Proceedings of the 23rd USENIX Security Symposium,
USENIX’14, 2014, pp. 941–955.

[17] X. Ge, N. Talele, M. Payer, T. Jaeger, Fine-grained control-flow integrity
for kernel software, in: 2016 IEEE European Symposium on Security and
Privacy, 2016. doi:10.1109/eurosp.2016.24.

[18] S. Nagarakatte, J. Zhao, M. M. Martin, S. Zdancewic, Softbound: Highly
compatible and complete spatial memory safety for C, in: Proceedings of
the SIGPLAN conference on Programming language design and imple-
mentation, 2009.

[19] S. Nagarakatte, J. Zhao, M. M. Martin, S. Zdancewic, Cets: Compiler
enforced temporal safety for C, in: Proceedings of the 2010 International
Symposium on Memory Management (ISMM’10), 2010.

[20] M. S. Simpson, R. K. Barua, Memsafe: Ensuring the spatial and temporal
memory safety of c at runtime, Software: Practice and Experience 43 (1)
(2013).

[21] D. Bruening, Q. Zhao, Practical memory checking with dr. memory, in:
Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, 2011.

[22] G. C. Necula, J. Condit, M. Harren, S. McPeak, W. Weimer, Ccured:
Type-safe retrofitting of legacy software, ACM Trans. Program. Lang.
Syst. (2005).

[23] F. Ch. Eigler, Mudflap: pointer use checking for C/C++, in: GCC Devel-
oper’s Summit, 2003.

[24] A. Abbasi, T. Holz, E. Zambon, S. Etalle, Ecfi: Asynchronous control
flow integrity for programmable logic controllers, in: Proceedings of the
33rd Annual Computer Security Applications Conference, ACSAC 2017,
2017, pp. 437–448.

[25] J. Newsome, D. Brumley, D. Song, Sting: An end-to-end self-healing sys-
tem for defending against zero-day worm attacks on commodity software
(2005).

[26] J. Newsome, D. Brumley, D. Song, Vulnerability-specific execution fil-
tering for exploit prevention on commodity software, in: Proceedings
of the 13th Symposium on Network and Distributed System Security
(NDSS’05), 2005.

[27] D. Brumley, J. Newsome, D. Song, H. Wang, S. Jha, Towards auto-
matic generation of vulnerability-based signatures, in: Proceedings of
IEEE Symposium on Security and Privacy (SP’06), DC, USA, 2006.
doi:10.1109/SP.2006.41.

[28] A. Smirnov, T. Chiueh, Automatic patch generation for buffer overflow
attacks, in: International Symposium on Information Assurance and Se-
curity, 2007.

[29] CVE-2016-5814, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2016-5814 (2016).
[30] CVE-2012-6438, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2012-6438 (2012).
[31] CVE-2012-6436, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2012-6436 (2012).
[32] CVE-2013-0674, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2013-0674 (2013).
[33] CVE-2015-1449, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2015-1449 (2015).
[34] CVE-2012-0929, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2012-0929 (2012).
[35] CVE-2015-7937, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2015-7937 (2015).
[36] CVE-2011-5007, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2011-5007 (2011).
[37] S. Adepu, A. Mathur, Using process invariants to detect cyber attacks on a

water treatment system, in: ICT Systems Security and Privacy Protection,
2016.

[38] C. M. Ahmed, C. Murguia, J. Ruths, Model-based attack detection
scheme for smart water distribution networks, in: Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security,
ASIA CCS ’17, 2017, pp. 101–113.

[39] C. M. Ahmed, M. Ochoa, J. Zhou, A. P. Mathur, R. Qadeer, C. Murguia,
J. Ruths, Noiseprint: Attack detection using sensor and process noise fin-
gerprint in cyber physical systems, in: Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, 2018, pp. 483–
497.

[40] C. Murguia, J. Ruths, Characterization of a cusum model-based sensor at-
tack detector, in: IEEE 55th Conference on Decision and Control (CDC),
2016, pp. 1303–1309.

[41] A. github repository, Comparison of addresssanitizer with other
memory safety tools, https://github.com/google/sanitizers/wiki/
AddressSanitizerComparisonOfMemoryTools (2015).

[42] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, T. Holz,
Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in c applications, 2015 IEEE Symposium on Security
and Privacy (2015). doi:10.1109/sp.2015.51.

[43] E. G. Chekole, G. Huaqun, Ics-sea: Formally modeling the conflicting
design constraints in ics, in: Proceedings of the Fifth Annual Indus-
trial Control System Security (ICSS) Workshop, ICSS, Association for
Computing Machinery, New York, NY, USA, 2019, p. 60–69. doi:

10.1145/3372318.3372325.
URL https://doi.org/10.1145/3372318.3372325

[44] GCC, Gimple, https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
(2018).

[45] GCC, Gcc basic blocks, https://gcc.gnu.org/onlinedocs/gccint/
Basic-Blocks.html (2018).

[46] Common Vulnerabilities and Exposure (CVE), Cve-2018-20818, https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20818 (2019).

[47] E. G. Chekole, U. Cheramangalath, S. Chattopadhyay, M. Ochoa, H. Guo,
Taming the war in memory: A resilient mitigation strategy against mem-
ory safety attacks in CPS, CoRR abs/1809.07477 (2018). arXiv:1809.
07477.

[48] G. Liang, J. Zhao, F. Luo, S. R. Weller, Z. Y. Dong, A review of false
data injection attacks against modern power systems, IEEE Transactions
on Smart Grid 8 (4) (2017) 1630–1638.

[49] SWaT, Secure water treatment (swat) testbed (2018).
[50] C. M. Ahmed, J. Zhou, A. P. Mathur, Noise matters: Using sensor and

process noise fingerprint to detect stealthy cyber attacks and authenticate
sensors in cps, in: Proceedings of the 34th Annual Computer Security
Applications Conference, ACSAC’18, 2018, pp. 566–581.

[51] OpenPLC, Openplc, http://www.openplcproject.com/ (2018).
[52] ScadaBR, Scadabr, http://www.scadabr.com.br/ (2018).
[53] L. Zhou, H. Guo, D. Li, J. W. Wong, J. Zhou, Mind the gap: Security

analysis of metro platform screen door system, in: Proceedings of the
Singapore Cyber-Security RandD Conference (SG-CRC’17), 2017.

[54] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, Stackguard: Automatic adaptive de-
tection and prevention of buffer-overflow attacks, in: Proceedings of the
7th Conference on USENIX Security Symposium - Volume 7, USENIX
Association, 1998.

[55] Duartes.org, Epilogues, canaries, and buffer overflows, http://duartes.org/

gustavo/blog/post/epilogues-canaries-buffer-overflows/.
[56] LWN.net, Address space layout randomization, https://lwn.net/Articles/

569635/.
[57] S. Bhatkar, D. C. DuVarney, R. Sekar, Address obfuscation: An efficient

approach to combat a board range of memory error exploits, in: Proceed-
ings of the 12th Conference on USENIX Security Symposium - Volume
12, USENIX Association, 2003.

[58] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, D. Boneh,
On the effectiveness of address-space randomization, in: Proceedings of

17

https://doi.org/10.1109/eurosp.2016.24
https://doi.org/10.1109/SP.2006.41
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5814
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5814
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6438
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6438
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6436
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6436
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0674
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0674
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1449
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1449
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0929
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0929
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7937
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7937
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-5007
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-5007
https://github.com/google/sanitizers/wiki/AddressSanitizerComparisonOfMemoryTools
https://github.com/google/sanitizers/wiki/AddressSanitizerComparisonOfMemoryTools
https://doi.org/10.1109/sp.2015.51
https://doi.org/10.1145/3372318.3372325
https://doi.org/10.1145/3372318.3372325
https://doi.org/10.1145/3372318.3372325
https://doi.org/10.1145/3372318.3372325
https://doi.org/10.1145/3372318.3372325
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://gcc.gnu.org/onlinedocs/gccint/Basic-Blocks.html
https://gcc.gnu.org/onlinedocs/gccint/Basic-Blocks.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20818
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20818
http://arxiv.org/abs/1809.07477
http://arxiv.org/abs/1809.07477
http://www.openplcproject.com/
http://www.scadabr.com.br/
http://duartes.org/gustavo/blog/post/epilogues-canaries-buffer-overflows/
http://duartes.org/gustavo/blog/post/epilogues-canaries-buffer-overflows/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/

the 11th ACM Conference on Computer and Communications Security,
CCS’04, 2004.

[59] fpmurphy.com, Position independent executables, http://blog.fpmurphy.
com/2008/06/position-independent-executables.html.

[60] Solar Designer, Non-executable user stack, https://www.usenix.org/

legacy/publications/library/proceedings/sec98/full papers/full papers/
cowan/cowan html/node21.html.

[61] R. Roemer, E. Buchanan, H. Shacham, S. Savage, Return-oriented pro-
gramming: Systems, languages, and applications, ACM Transactions on
Information and System Security 15 (1) (2012).

[62] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, Z. Liang, Data-
oriented programming: On the expressiveness of non-control data attacks,
2016 IEEE Symposium on Security and Privacy (2016).

[63] W. D. Groef, N. Nikiforakis, Y. Younan, F. Piessens, Jitsec: Just-in-time
security for code injection attacks, in: Benelux Workshop on Information
and System Security (WISSEC), 2010.

[64] M. Jauernig, M. Neugschwandtner, C. Platzer, P. M. Comparetti,
Lobotomy: An architecture for jit spraying mitigation, in: Proceedings
of the 2014 Ninth International Conference on Availability, Reliability
and Security, ARES’14, IEEE Computer Society, USA, 2014, p. 50–58.
doi:10.1109/ARES.2014.14.
URL https://doi.org/10.1109/ARES.2014.14

[65] B. Niu, G. Tan, Rockjit: Securing just-in-time compilation using modular
control-flow integrity, in: Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS’14), 2014.

18

http://blog.fpmurphy.com/2008/06/position-independent-executables.html
http://blog.fpmurphy.com/2008/06/position-independent-executables.html
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/full_papers/cowan/cowan_html/node21.html
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/full_papers/cowan/cowan_html/node21.html
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/full_papers/cowan/cowan_html/node21.html
https://doi.org/10.1109/ARES.2014.14
https://doi.org/10.1109/ARES.2014.14
https://doi.org/10.1109/ARES.2014.14

	Introduction
	Background
	CPS
	Memory-safety tools

	Attacker and system models
	Attacker model
	Modeling CPS design constraints
	Modeling real-time constraints
	Physical-state resiliency

	CIMA: Countering Illegal Memory Accesses
	Overview of CIMA
	Approach of CIMA
	Illustrative Example
	Validating CIMA
	Implementation challenges

	Experimental Design
	SWaT
	Purification process
	Components and specifications

	Open-SWaT
	SecUTS

	Evaluation
	Security guarantees
	Efficiency
	Resilience
	Memory usage overheads

	Related work
	Conclusion

