
On the Security of Containers: Threat Modeling, Attack Analysis, and Mitigation
Strategies

Ann Yi Wonga, Eyasu Getahun Chekolea, Martín Ochoab, Jianying Zhoua

aSingapore University of Technology and Design, Singapore, Singapore
bDepartment of Computer Science, ETH Zurich, Zürich, Switzerland

Abstract

Traditionally, applications that are used in large and small enterprises were deployed on “bare metal” servers installed with
operating systems. Recently, the use of multiple virtual machines (VMs) on the same physical server was adopted due to cost
reduction and flexibility. Nowadays, containers have become popular for application deployment due to smaller footprints than the
VMs, their ability to start and stop more quickly, and their capability to pack the application binaries and their dependencies/libraries
in standalone units for seamless portability. A typical container ecosystem includes a code repository (e.g., GitHub) where the
container images are built from the codes and libraries and then pushed to the image registry (e.g., Docker Hub) for subsequent
deployment as application containers. However, the pervasive use of containers also leads to a wide-range of security breaches
such as attackers stealing credentials, source codes and sensitive data from image registry and code repository, carrying out DoS
attacks on application containers, and gaining root access to misuse the underlying host resources, among others. In this paper,
we first perform threat modeling on the containers ecosystem using the popular threat modeling framework, called STRIDE. Using
STRIDE, we identify the vulnerabilities in each system component, and investigate potential security threats and their consequences.
Then, we conduct a comprehensive survey on the existing countermeasures designed against the identified threats and vulnerabilities
in containers. In particular, we assess the strengths and weaknesses of the existing mitigation strategies designed against such
threats. We believe that this work will help researchers and practitioners to gain a deeper understanding of the threat landscape in
containers and the state-of-the-art countermeasures. We also discuss open research problems, the research gaps and future research
directions in containers security, which may ignite further research to be done in this area.

Keywords: Containers, Containerization, Containers Security, Docker, Threat Modeling, STRIDE Framework

1. Introduction

Many enterprises have started to deploy applications in con-
tainers. Some popular examples are Gmail, YouTube, Google
Search [1], Netflix [2], and PayPal financial services [3], among
others. Running an application in a container allows its bina-
ries, libraries, and other dependencies to be abstracted from
the operating environment and hence be portable from a de-
veloper notebook to the on-prem data centre and the public
cloud. Therefore, containerization allows an application to be
deployed efficiently and scaled easily. Gartner, a leading re-
search and advisory company in information technology and
cybersecurity forecasts that 15% of all applications will be run-
ning in containers by 2024, up from 5% in 2020 [4]. Gartner
also forecasts that 75% of large enterprises globally will deploy
production application in containers by 2022, up from less than
30% in 2020 [4]. The most widely employed container runtime
is Docker at 79% share of the market [5].

Although containers are revolutionizing enterprises and other
systems, they also have several weaknesses and vulnerabilities
that expose them to a wide-range of cyberattacks. A recent re-
port [6] revealed that about 51% of around 4 million images
in Docker Hub have exploitable vulnerabilities of which 0.16%
or 6,432 images had malicious software which were primarily

cryptocurrency miner. The attackers could insert malicious im-
ages directly on misconfigured hosts [6], [7] or into Docker Hub
due to the ease of pushing and pulling images to and from it
without controls [6]. In another report [8], a cybersecurity team
discovered through its regular monitoring that by the end of
2019, a hacker group scanned more than 59,000 IP networks on
a large scale to find exposed Docker API endpoints. Most con-
tainers are also configured with default network settings, mak-
ing it easy to establish remote connections. This was discovered
by TeamTNT (a cybercrime group) and used it as a backdoor to
run crypto-mining malware on the underlying system to gener-
ate cryptocurrencies [9]. As of the date of this paper, there are
516 container related security vulnerabilities listed in MITRE
CVE [10].

Several real-world cyberattacks have also been reported on
containers. In 2018, attackers hacked into Tesla’s container or-
chestration console of Kubernetes and installed crypto-mining
software to mine cryptocurrency using its cloud computing re-
sources [11]. Consequently, the U.S. government National Se-
curity Agency (NSA) also alerted industries over a foreign-
based cybercrime group APT28’s massive attacks on containers
that run in Kubernetes clusters [12]. In 2019, other attackers
hacked into Docker Hub and gained access to usernames and
passwords of 190,000 user accounts [13]. An attacker can then

Preprint submitted to Computers & Security February 19, 2023



use the compromised Docker instance as a backdoor to spin the
container, which will install the XMRig cryptocurrency miner
for illegal mining [8]. There were also many other critical at-
tacks that had been launched on containers and their subsys-
tems [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [20], [26], [27]. These and other real-world exam-
ples show how security is a critical concern in container sys-
tems, beyond the conventional IT systems.

To alleviate the security concerns, several research works
have been done on the security of containers, some focusing
on vulnerability analysis [28], [29], [30], [31], [32], [33], [34],
[35], and others on mitigation strategies [36], [37], [38], [39],
[40], [41], [42], [43], [44], [45], [46], [20],[47], [48], [49].
However, most of the related works only focus on a specific vul-
nerability, threat, use-case or subsystem of containers. Hence,
they do not provide a comprehensive security analysis on the
entire container ecosystem (spanning image creation to distri-
bution processes). In addition, most of the existing mitigation
strategies already have certain flaws and limitations. For exam-
ple, recent studies revealed that the existing Linux-based mit-
igation strategies used in containers, such as cgroups, names-
paces and capabilities, are subjected to attacks resulting in re-
sources exploitations and denials of services [26], [20]. Fur-
thermore, some are probably outdated and may not reflect the
latest threat landscape as shown in the example of [38], which
suggests that the Docker container is fairly secure with the de-
fault configuration but it is in fact exploitable in today’s context
[50]. Therefore, the existing works might not provide a com-
prehensive security analysis and state-of-the-art information on
the security landscape of the containers ecosystem.

In this work, we make a systematic and comprehensive
survey on the security of containers, covering vulnerabilities,
threats, threat consequences and existing mitigation strategies,
to provide a comprehensive and state-of-the-art information on
the security landscape of containers. To be able to specify the
scope of our survey and map existing literature, we first per-
form threat modeling on the containers ecosystem. In partic-
ular, we study the threat landscape of the containers supply
chain process – spanning code repository to image registry and
then deployment processes – using the STRIDE [51] (Spoofing,
Tampering, Repudiation, Information disclosure, Denial of ser-
vice, and Elevation of privilege) threat modeling framework.
We choose STRIDE as it is one of the most mature threat mod-
eling frameworks, which has also been widely used in the Mi-
crosoft Secure Development Lifecycle [52, 53]. STRIDE has
also been successfully adopted by several research works [54],
[55], [56], [57]. Using STRIDE, we first design a data flow dia-
gram (DFD) of the container system to map its components and
their relationship via the flow of data. We then conduct a wide-
range of security analysis on each component to discover the
vulnerabilities, the associated threat actions and the resulting
consequences.

After completing our threat modeling, we then conduct
a comprehensive survey on the vulnerabilities and security
threats identified. In particular, we analyze and discuss the ef-
fectiveness and limitations of existing mitigation strategies de-
signed against the vulnerabilities and threats identified through

our threat modeling. Furthermore, we highlight open security
problems and future research directions in containers security,
which may motivate the community to carry out further re-
search in this area.

In sum, we believe that this work would provide a com-
prehensive and state-of-the-art information to researchers and
practitioners on the latest security landscape of container sys-
tems. This can help the community to better understand the
latest security issues in containers and the available mitigation
strategies to counter them.

Organization: The rest of the paper is structured as follows:
Section 2 provides relevant background information on con-
tainers, STRIDE framework, and related works on containers
security. Section 3 discusses our threat modeling of the con-
tainer ecosystem using the STRIDE framework. Section 4 in-
vestigates the existing mitigation solutions and analyses their
limitations. In Section 5, we summarize the results of our sur-
vey, and highlight future research directions. Finally, Section 6
concludes our paper.

2. Background

2.1. Overview of Containers
A container is an independent, self-sufficient package for

running an application or service. It includes the applica-
tion binaries, the software libraries or dependencies, and the
hardware requirements needed to run it, all combined into a
self-contained unit. The key capabilities which enable a con-
tainer to perform its function securely and efficiently (i.e., with-
out resource constraints) are namespaces and control groups
(cgroups). Namespaces provide process isolation and enable
multiple application processes in containers to share a single
host instance. On the other hand, cgroups allocate the host re-
sources, such as CPU and memory, among the processes [58].

Containers are receiving high popularity and being widely
adopted by various enterprises. This is mainly because of the
following reasons: (a) a container is more lightweight than a
virtual machine and therefore starts and stops much faster; (b) a
container is portable as it includes the application and all its de-
pendencies, libraries and binaries packaged into a runtime envi-
ronment, therefore allowing it to run anywhere from a desktop
to a datacentre; (c) a containerized application is scalable and
can easily add or reduce the number of containers to meet vary-
ing demands.

The industry’s main use of containers are often tied to mi-
croservices and the cloud. Containerization supports the mi-
croservices architecture very well [59]. Microservices struc-
ture an application into a set of loosely coupled software ser-
vices that run in containers [60]. The entire container plat-
form and the microservice architecture are typically deployed
in the cloud infrastructure as it is scalable and resilient. IBM
forecasts that within the next two years, 59% of all enterprise
applications will be developed with microservices [61], fur-
ther spurring the growth of container usage. There are many
enterprise-level implementations of microservices on contain-
ers, and some prominent examples are Amazon, Netflix, The
Guardian, Twitter, PayPal, Tencent, Baidu, Taobao, etc. [60].

2



2.2. Overview of STRIDE
Threat modeling is a process of identifying and evaluating

threats and vulnerabilities in a particular system [62]. There
are several threat modeling frameworks and methodologies de-
signed for this purpose, including STRIDE [51], DREAD [63],
PASTA [64], VAST [65], Trike [66], OCTAVE [67], and
NIST [68], among others. In this paper, we use the STRIDE
framework as it is amongst the most mature and popular threat
modeling frameworks that has been widely used since 1999.
It is also adopted by large tech companies, such as Microsoft
[52, 53]. Moreover, its DFD-based approach suits well for the
container environment as it allows to analyze the threat land-
scape of containers along its supply chain process.

STRIDE is developed by Microsoft to be used by its devel-
opers during the software development life cycle. More specif-
ically, it is used to identify and analyze vulnerabilities and
threats with respect to the authentication, authorization, con-
fidentiality, integrity, non-repudiation and availability security
properties. The STRIDE threat modeling can be performed
using the STRIDE-per-element or STRIDE-per-interaction ap-
proaches [54]. The former is used to analyze threats on system
components, and the latter is used to analyse threats on the in-
teraction between a pair of components. A STRIDE threat mod-
eling is performed using the data flow diagram (DFD) of the
system. A DFD is a visual representation to show the flow of in-
formation or data through a process or system [69]. It uses four
symbols to represent system components and their relationship
with others: (a) interactors such as the developer, endpoints, at-
tacker, servers represented by a rectangle, (b) processes such as
the application, a functionality, represented by a circle, (c) data
flows, which is the data over network connections, represented
by a one way arrow, and (d) data store such as database, logs,
and files, represented by two parallel horizontal lines [54] [70].

In general, threat modeling using the STRIDE framework in-
volves the following main steps: (a) drawing the DFD of the
system; (b) identifying vulnerabilities on each DFD compo-
nent; (c) analyzing potential threats that exploit the vulnerabil-
ities; (d) proposing mitigation strategies for the vulnerabilities
and threats identified [54].

2.3. Literature Review on Security of Containers
As highlighted in the introduction, containers are vulnerable

to a wide-range of cyber threats. The threats may target various
attack surfaces in containers and their subsystems. The main
attack surfaces of containers are user credentials, application
codes, container images, container privileges, repositories, and
network channels [71]. For example, stolen user credentials at
the GitHub and Docker Hub can lead to user’s account being
hijacked or spoofed, resulting in malicious codes and images
to be uploaded into these registries. An attacker may also use
a compromised container as a backdoor to do illegal activities
on other containers. This means that if the attacker gets access
to the compromised container, it can penetrate to the host ker-
nel and launch other containers for illegitimate purposes, e.g.,
crypto-mining [8].

The application code is another attack surface where bad cod-
ing practices can result in vulnerabilities like SQL injection,

cross-site scripting, and server-side request forgery, among oth-
ers. The Docker Hub is a popular registry for about four million
of images and there are almost half which contain malware [6].
Some malicious images can stay online in Docker Hub for a
year and while some have been installed for more than a mil-
lion times [72]. Therefore, if a developer creates a multi-stage
Dockerfile and uses multiple images without proper scanning,
he may create a container with embedded vulnerabilities. An
attacker can then gain access to a compromised container and
raises its privilege to gain root access to the host kernel. Lastly,
there are network-related threats in the virtual ethernet bridge
connected between the containers and from the internet into the
container.

There are a wide-range of related works on containers secu-
rity. Below, we discuss the most relevant ones. To simplify our
discussion, we categorize them as “vulnerability analysis” and
“mitigation strategies”.

2.3.1. Vulnerability analysis
There are several existing works focusing mainly on the in-

vestigation and analysis of threats and vulnerabilities around
the container ecosystem. One research initiative [33] gathered
223 container related exploits from a public database1 and clas-
sified them into a two-dimensional attack taxonomy. One di-
mension was the hierarchical layers of web app, server, library
and kernel, and the other dimension was the consequences of
attacks, such as sensitive information leakage, remote control,
denial of service, and kernel privilege escalation. However, the
main emphasis of this work was on the privilege escalation ex-
ploits and how to configure the kernel security mechanisms to
defend against them.

Another study [28] was conducted on attacks that mainly tar-
get the Docker platform and the image distribution process. The
study revealed that insecure configurations and weak access
controls of the Docker platform can lead to unauthorised ac-
cess to the host filesystems and network stack of the container.
Automated builds and the use of webhooks during image distri-
bution was shown to allow a tampered code to be deployed in
a production server within minutes. However, this study only
focuses on threats to the Docker platform in containers. There-
fore, it is not comprehensive enough to cover the multifaceted
threats facing the container ecosystem from image creation to
image distribution.

MITRE recently released the Adversarial Tactics, Tech-
niques, and Common Knowledge (ATT&CK) for containers. It
categorized the attacks techniques on containers and the orches-
tration manager (Kubernetes) under initial access, execution,
persistence, privilege escalation, defense evasion, credential ac-
cess, discovery and impact [34], [35]. However, the MITRE
framework only focuses on the adversary techniques and does
not trace the use-case of containers nor recommends context-
relevant mitigation actions.

Another research was conducted on the security of the
Docker platform by analyzing the vulnerabilities listed in Com-
mon Vulnerabilities and Exposure (CVE) [29]. In this work,

1https://www.exploit-db.com/

3



the authors used static code analysis (SCA) tools on the vul-
nerable and patched versions of the Docker’s code-base in or-
der to study the differences between the two and the effective-
ness of SCA tools in detecting the vulnerabilities. This study
primarily used static code analysis tools to analyze Docker’s
source-code and did not relate them to real use-cases nor rec-
ommend practical mitigation plans. A survey by Sultan et al.
[32] was also conducted on the security of containers based on
a four-dimensional risk analysis: risks from the application in
the container, risks from another container, risks from a con-
tainer to the host, and risks from the host to the container.

Wist et al. [30] scanned 2,500 Docker Hub images, mapped
their vulnerabilities using the Common Vulnerability Scoring
System (CVSS), and compared the vulnerabilities across the
types of images, the types of scripting languages, and pack-
ages. In another research, Flauzac et al. [31] reviewed the na-
tive containers security by conducting a static comparison of
6 container runtime solutions, namely LXC (Linux Contain-
ers), LXD (an open-source container management extension
for LXC), Singularity, Docker (runc), Kata-containers (kata-
runtime) and gVisor(runsc), in terms of their abilities to iso-
late system resources such as storage, network, processor, and
memory. However, this is carried out in the container’s default
and standalone state and therefore does not reflect a real oper-
ating environment that is used by a container.

2.3.2. Mitigation strategies
While there are several vulnerabilities and threats in the con-

tainer ecosystem, there are also certain mitigation strategies
developed against them. Some of the mitigation strategies,
e.g., namespaces and cgroups, are built-in to the container’s
host operating system. The container’s namespaces isolate
the resources of inter-process communication (IPC), mount (or
filesystems), process identifier (PID), network, user (User and
Group IDs), and UTS (hostnames and domain names). The
cgroups control the amount of resources (like the CPU, mem-
ory, disk I/O) a container can use so that other co-resident con-
tainers can obtain their fair share of the resources [73].

The other mitigation strategies are the underlying secu-
rity features of the host kernel. These include capabilities,
secure computing mode (seccomp), security-enhanced Linux
(SELinux) and AppArmor [73]. The “capabilities” are list of
privileges that can be enabled or disabled for a process, and they
serve to limit a root-enabled process from getting more than the
minimum permissions required for it to perform its function.
The secure computing mode (seccomp) helps to filter the sys-
tem calls to the kernel from the container [49]. It provides a
finer control than capabilities and restricts the number of system
calls an attacker may perform from the container to the kernel
[37]. SELinux is integrated in Centos/RHEL/Fedora distros,
and it provides mandatory access control (MAC) policy setting
for the applications, processes, and files in a container such that
it can prevent root-enabled process within a container to illegit-
imately access objects outside. AppArmor is integrated in De-
bian/Ubuntu distros, and it is an alternative MAC to SELinux.
While SELinux applies security rules on files, AppArmor ap-
plies the rules on file paths.

However, recent studies revealed that most of the existing
mitigation strategies of containers have certain flaws and limita-
tions. For example, the Linux-based mitigation strategies used
in containers, such as cgroups, namespaces and capabilities, are
subjected to attacks resulting in resources exploitations, denials
of services, and privilege escalation [26], [20], [50]. Thanh
Bui [38] discovered that a container cannot achieve effective
security by using only the built-in security features of the host
operating system, such as namespaces and cgroups. But, it
should also use firewall rules (e.g., ebtables), MAC measures
(e.g., SELinux or AppArmor), and run in a "non-privileged"
mode. A detailed discussion of other existing mitigation strate-
gies is also provided in Section 4.

In general, most of the existing works (both in vulnerability
analysis and mitigation strategies) focus only on certain secu-
rity issues, and do not provide a comprehensive security anal-
ysis on the overall container ecosystem. As discussed above,
some of the existing mitigation strategies have also their own
limitations. Some of the related works are also likely outdated,
and they might not show the current threat landscape in contain-
ers. Therefore, it would be difficult to get a comprehensive and
state-of-the-art information on the security landscape of con-
tainers. In this work, we perform threat modeling and a sys-
tematic survey on the security of containers, covering vulner-
abilities, threats, threat consequences and existing mitigation
strategies, to provide a comprehensive and latest information
on the threat and security landscape of containers.

3. Threat Modeling using STRIDE

This section discusses our STRIDE threat modeling for con-
tainers. As highlighted in the preceding sections, we first per-
form threat modeling using the STRIDE framework, particu-
larly using the STRIDE-per-element approach, to identify po-
tential vulnerabilities and threats that may exist in each compo-
nent of the container ecosystem. The main purposes of doing
the threat modeling are to specify the scope of our survey based
on the threats identified, map existing literature to those threats
and highlight missing research angles.

3.1. Plotting the DFD of Containers

As discussed in Section 2.2, plotting the DFD of the system
is the first step in the STRIDE threat modeling. In the context
of containers, a common use-case is that the developer develops
his application code and upload it to a code repository, such as
GitHub [74]. He will then build the app image from the source-
code in GitHub by creating the Dockerfile [74] and pushes it to
the Docker repositories in the Docker Hub registry. The image
is finally pulled to a Docker Host and deployed as a container
application. We plot the DFD of the above process in Figure
1, illustrating the container creation and deployment processes
and its system components. More specifically, the developer
(an external entity) performs the process of coding and Dock-
erfile creation (P-1). Then, the completed code and Dockerfile
is committed and uploaded via dataflow path DF-1 to the code
repository GitHub (DS-1). Thereafter, the code and its libraries

4



are packaged into a docker image (P-2) which will be pushed
via DF-3 to the Docker Hub registry (DS-2). The docker image
will then be subsequently pulled and run (P-3) via DF-5 into the
Docker Host and deployed in container.

In our example, the Docker Host comprises of 4 functional
components with two containers P-4 and P-5. The container is
a wrapped and controlled environment and contains the appli-
cation and the dependent libraries and binaries The Docker en-
gine or daemon component (P-6) is responsible for launching
the containers and to control their isolation level, capabilities
restrictions and security profiles. The host OS kernel compo-
nent (P-7) controls the host hardware and manages functions
such as memory, files system, network, and process manage-
ment. The Docker engine communicates with the host OS ker-
nel using system calls.

3.2. Identifying Vulnerabilities in Containers
Vulnerabilities are the weaknesses in a system that allow an

attacker to gain access into it via malicious techniques. In con-
tainers, vulnerabilities can occur during image creation, in its
push and pull connections, verification, during the registry stor-
age process, communications between the container and the OS
kernel, and during the communications between two different
containers. Vulnerabilities can also occur because of miscon-
figurations of the Docker Host and the Linux kernel.

Using the STRIDE framework, we discovered several vul-
nerabilities on the DFD (cf. Figure 1) of the container systems.
To save space and simplify our presentation, we only discuss
the most relevant ones, as shown below.
V1: Docker Hub (DS-1) does not enforce stringent password
policies other than the minimum password length restriction of
9 characters [75]. GitHub (DS-2) mandates an account pass-
word to be at least 8 characters long if it includes a number
and a lowercase letter, or a 15 characters with any combina-
tion of characters [76]. Both Docker Hub and GitHub also do
not enforce the additional protection of multi-factor authentica-
tion. Therefore, a determined attacker can deploy a variety of
password attack techniques like brute-force, dictionary, pass-
word spraying, and many others [77] to steal account IDs and
passwords or to gain root access. In fact, these vulnerabili-
ties are reported in dozens of CVEs, such as CVE-2020-35467,
CVE-2020-35466, 2020-35462, CVE-2020-35190, CVE-2020-
35192, CVE-2022-2927, CVE-2022-2098, CVE-2022-1775,
and CVE-2022-0777, among others.
V2: Docker Hub allows a developer to upload (or push) an im-
age that is not signed. This allows an image to be downloaded
(or pulled) without validating its authenticity [78]. This means
that even tampered images can also be successfully stored in
Docker Hub and used for deployment by unsuspecting develop-
ers. Certain related vulnerabilities are reported in CVE-2018-
1277 and CVE-2014-8178.
V3: Both Docker Hub and GitHub store software images and
codes as they are, and they do not scan them for sensitive pa-
rameters, such as hard-coded passwords, access keys and other
credentials. Inexperienced developers may include such sen-
sitive information within the images and codes. On the other
hand, industry practitioners have developed open-source tools,

e.g., Docker Images Explorer2 and Whispers3, to scan repos-
itories and registries for passwords, API tokens, access keys,
hashed credentials and others [79]. Hence, attackers may use
these tools to discover exposed credentials. Related vulnera-
bilities are reported in several CVEs, e.g., CVE-2021-20537,
CVE-2021-20537, and CVE-2022-25217.
V4: Docker images are not always safe and patched for use and
Docker Hub does not check if the latest patches are applied. A
recent study [6] was conducted on 4 million Docker Hub im-
ages and discovered that 51% of them had at least one critical
vulnerability. Among them, about 6,400 were classified as ma-
licious, of which 44% were related to cryptocurrency mining,
23% were due to flatmap-stream malware, and 20% were a va-
riety of hacking tools. Another study of more than 2 million
images from Docker Hub found that it took 181 days on aver-
age for a software originator to fix a software vulnerability, but
it took an extra 422 days on average for the developer to patch
the fix in the image containing the software [22]. Therefore, a
software with security vulnerabilities can remain in an image
for more than 600 days on average and has a high probabil-
ity to be downloaded and potentially exploited by the attackers.
Even for the prominent Log4j CVE-2021-44228 vulnerability,
there are about 9 Docker images that remain unpatched [80].
Related vulnerabilities are also reported in recent CVEs, e.g.,
CVE-2022-20617, CVE-2022-29186, CVE-2022-42889 [80].
V5: The distribution of images from Docker Hub requires only
the HTTP API [81]. This could allow an attacker to carry out
a man-in-the-middle (MITM) attack. In fact, a recent CVE
report, CVE-2017-18641, revealed that a critical vulnerability
was detected on LXC (i.e., the Linux container namespace iso-
lation technology used by Docker) that allowed a code to be
download over cleartext HTTP and to omit digital-signature
checks [82]. This vulnerability would allow a man-in-the-
middle attacker to install malicious code into the container
that will run as root. Other related vulnerabilities are also re-
ported in CVE-2018-3834, CVE-2018-3833, CVE-2015-1843
and CVE-2021-22898.
V6: Container allows API endpoints to be publicly accessi-
ble on the internet, without any firewall or password protec-
tion. This can allow attackers to successfully scan the exposed
APIs and access the containers to launch attacks [83]. Some
related vulnerabilities are reported in CVE-2022-24829, CVE-
2022-22152, CVE-2020-35197 and CVE-2022-31066.
V7: According to [84], 44% of developers use Continuous In-
tegration/Continuous Delivery (CI/CD) process to deploy con-
tainers. The continuous integration stage pushes the applica-
tion code through the commit, build and test phases to the code
repository and subsequently to the image registry. The con-
tinuous delivery stage then deploys the application in a con-
tainer with environment-specific parameters. The entire CI/CD
process presents wider attack vectors for attackers to exploit.
While the automatic CI/CD process yields efficiency, the speed
and lack of manual oversight creates security risks. A success-
ful exploit in any part of the pipeline will allow an attacker to

2https://github.com/matiassequeira/docker_explorer
3https://github.com/Skyscanner/whispers

5



Figure 1: Data flow diagram of the container system

permeate its control to the rest of the pipeline. Some CI/CD
related CVEs are CVE-2021-27024, CVE-2021-43832, CVE-
2022-24768, CVE-2022-24878, CVE-2022-29184, and others.

V8: A container is immutable and when it is deployed and
run, it cannot be changed or patched. A developer will need
to ensure that the base image, application binaries and libraries
are regularly updated to rebuild and redeploy the whole image.
Some image related vulnerabilities are CVE-2021-3344, CVE-
2021-3762, CVE-2021-32760, and CVE-2022-0552.

V9: Containers are typically stateless and not appropriate to
store persistent data, hence the logs that record the containers’
activities are stored in the local disk in the Docker host and in
JSON file format. Each JSON log file contains only one con-
tainer information [85]. Over time and as more logs are created,
unless the old logs are cleared or log rotation is performed, the
local disk will fill up and face exhaustion [86]. One such vul-
nerability is registered in CVE-2022-1708.

V10: One feature of the container is that it can directly connect
with the host kernel, unlike a virtual machine (VM) which re-
quires an application to bypass the VM kernel and hypervisor.
Consequently, it is easier for an attacker to access the host ker-
nel if it can breach into an application within a container that
resides on the host [87]. This vulnerability has been exploited
in CVE-2017-18509, CVE-2018-16884, CVE-2021-4154, and
CVE-2022-0811.

V11: Container is reliance on Linux kernel and there are many
vulnerabilities that are related to the Linux kernel that may af-
fect the security of container, such as the vulnerability in runc
module4 that allows a malicious container to gain root-level ac-
cess to the host machine [88]. To date, there are close to 3,000
Linux CVE vulnerabilities listed by MITRE [89]. However,
there has not been much in-depth research done on the number
and types of Linux vulnerabilities that directly impact contain-
ers. Some kernel-based container vulnerabilities are recently
discovered and reported in CVE-2016-9191, CVE-2017-18509,
CVE-2018-16884, CVE-2021-3669 and CVE-2021-44733.
V12: The efficient architecture design of multiple containers on
a host and sharing its CPU, memory, network, UIDs and other
resources from the same kernel is also a security risk and a vul-
nerability. This is because, if the kernel is attacked, malicious
attackers can gain root privilege of the host and from there, they
can attack other containers and the entire system [90]. Some
of the vulnerabilities reported in CVE are CVE-2020-15257,
CVE-2021-41103, CVE-2021-4154 and CVE-2022-31030.

The vulnerabilities and their associated CVEs are sum-
marised in Table 1. It is observed that V1 is associated with
the highest number of CVEs, in which most of them are rated

4https://www.cvedetails.com/cve/CVE-2019-5736/

6



Table 1: Vulnerabilities and their corresponding CVEs
Vulnerabilities CVE(s)
V1 CVE-2020-35467, CVE-2020-35466,

CVE-2020-35462, CVE-2020-35190,
CVE-2020-35192, CVE-2022-2927,
CVE-2022-2098, CVE-2022-1775, CVE-
2022-0777

V2 CVE-2018-1277, CVE-2014-8178
V3 CVE-2021-20537, CVE-2022-25217
V4 CVE-2021-44228, CVE-2022-20617,

CVE-2022-29186, CVE-2022-42889
V5 CVE-2017-18641, CVE-2018-3834, CVE-

2018-3833, CVE-2015-1843, CVE-2021-
22898

V6 CVE-2022-24829, CVE-2022-22152,
CVE-2020-35197, CVE-2022-31066

V7 CVE-2021-27024, CVE-2021-43832,
CVE-2022-24768, CVE-2022-24878,
CVE-2022-29184

V8 CVE-2021-3344, CVE-2021-3762, CVE-
2021-32760, CVE-2022-0552

V9 CVE-2022-1708
V10 CVE-2017-18509, CVE-2018-16884,

CVE-2021-4154, CVE-2022-0811
V11 CVE-2016-9191, CVE-2017-18509, CVE-

2018-16884, CVE-2021-3669, CVE-2021-
44733

V12 CVE-2020-15257, CVE-2021-41103,
CVE-2021-4154, CVE-2022-31030

critical. Note that V1 is related to weak password controls in
Docker Hub and GitHub. The accessibility of Docker Hub and
GitHub due to weak password controls could allow an attacker
to gain root privileges and cause severe damages. V5, V7 and
V11 are associated with the next highest number of CVEs, but
their severity rate is mostly medium and high. V4 and V10
are associated with lesser number of CVEs, but their severity
rate is mostly high and critical. V4 is related to the unsafe and
infrequently patched Docker images that may carry malicious
programs, and V10 is due to the container’s direct access to the
host kernel. Therefore, more emphasis would be placed on the
vulnerabilities V1, V4 and V10, which are frequently exploited
by attackers.

3.3. Analyzing Threats in Containers

Before we perform the threat analysis, we first outline the
possible threat consequences as we will refer them in the threat
analysis sections below. A threat consequence is a security vio-
lation that happens as a result of an attack. This includes unau-
thorized disclosure, deception, disruption and usurpation [91].
"Unauthorized disclosure" is when an unauthorized entity gains
access to the data. "Deception" is when the victim believes that
a false data is true. "Disruption" is when an normal operation is
disrupted and cannot carry on. "Usurpation" is when an unau-
thorized entity takes control of the system and operation. To
simplify our presentation as well as to easily refer them in other
sections, we assign short notations for the threat consequences

as follows: TC-1 for "unauthorized disclosure", TC-2 for "de-
ception", TC-3 for "disruption" and TC-4 for "usurpation". To
provide a quick and easy reference to readers, a description of
the notations is also provided in Table 2.

Table 2: Notations of threat consequences
TC-1 TC-2 TC-3 TC-4
Unauthorized
Disclosure

Deception Disruption Usurpation

3.3.1. Spoofing
Spoofing identity is an attack in which the attacker imper-

sonates the victim (which can be a user, file, process, or role)
to gain access into a system without the rightful consent. This
attack compromises the authenticity security property, and the
threat consequence is primarily TC-2 (or deception). Below,
we discuss a list of potential spoofing threats in the containers
ecosystem.
Spoofing the user’s GitHub account: By exploiting vulnera-
bility V1 listed in section 3.2, the attacker can gain access to a
developer’s credential in the GitHub repo at DS-1 and to em-
bed malware into the code. Some techniques to "steal" cre-
dentials are through spearphishing email, password-spraying,
brute force, scraping published credentials in repositories [92],
[93]. Applying the automated deployment pipeline, the mali-
cious code will be built into a container image at P-2. The im-
age is then pushed into Docker Hub at DS-2 and automatically
pulled and deployed at P-3 as container into the user’s docker
host. The entire process can take place within minutes and may
infect many other machines [20]. The threat consequences are
TC-2 followed by TC-1 (or unauthorized disclosure).
Spoofing the GitHub or Docker Hub: The GitHub repository
can be spoofed by an attacker and may mislead the victim to
upload his code to the attacker’s repository. The attacker can
then add malicious elements into the code and upload it to the
real GitHub repository. The threat consequence is TC-2. The
techniques can be in the form of DNS server spoofing where the
attacker diverts the victim’s traffic to a malicious IP address [94]
and this is achieved by using DNS cache poisoning, Kaminsky
attack, or DNS hijacking (DNSpionage) [95]. The same spoof-
ing technique can be used on the Docker Hub (DS-2) and can
lead to a malicious image being pulled to the Docker Host. So
far, we have not found any article that reports about this attack
vector in GitHub or Docker Hub.
Spoofing the Docker Account: A Docker account in Docker
Hub at DS-2 can be spoofed by an attacker and lead developers
to go to a “fake” account to download a malicious image. The
investigation team from security firm Aqua Security found that
a cybercrime group created an account called “portaienr” in or-
der to masquerade a legitimate account called “pontainer” [16].
The idea was to exploit typosquatting when a victim mistyped
the account name and be transferred to the attacker’s account
to pull malicious images [16], resulting in the threat conse-
quence of TC-2. Due to vulnerability V5, a Docker image is
not scanned for vulnerability nor verified for legitimacy, hence

7



the attack can be successful.
Spoofing the Docker Image: A Docker image can be spoofed
by an attacker and lead to an incorrect image being pulled to
the Docker Host. Security firm Trend Micro discovered that
attackers uploaded two malicious images and labelled them as
“alpine” and “alpine2” to fake it with the popular Alpine Linux
and trick unsuspecting developers [17]. Due to vulnerability
V5, the image was successfully pulled without scanning. Run-
ning these images resulted in spawning of containers that in-
stalled the XMRig crypto-mining applications. The attackers
could tap on the victim’s computing resources to mine crypto-
currency [17], resulting in threat consequence TC-4 (or usurpa-
tion).
Spoofing the DNS responses to a cluster of containers: Most
application containers are deployed in Kubernetes clusters
(RedHat‘s survey shows that 88% of customers use Kubernetes
to manage the containers [96]) and reside in pods. Each pod
communicates with each other via a bridge that runs in the root
network namespace. This is made possible due to the default
enablement of the capability NET_RAW, which allows traffic
(e.g., ICMP, ARP, DNS) to flow between containers. This is
a characteristic of vulnerability V12 where multiple containers
share the same host. An attacker can launch a DNS spoofing
attack from a compromised container in a pod and return fake
answers to DNS queries sent from a co-located victim container
pod. Subsequently, the attacker can execute MITM attack on
the network traffic between the containers [18], [19], resulting
in threat consequence TC-2.

3.3.2. Tampering
Tampering is an attack in which the attacker modifies the

data, memory space, or network and violates the security prop-
erty of integrity. The main tampering threats in containers are
discussed as below.
Tampering the network between Docker Hub and Docker
Host: Due to vulnerability V5, an attacker can tamper DF-4
and DF-5 (Figure 1), which are the data flow channels between
Docker Hub and Docker Host. The attacker can insert his mali-
cious images and be downloaded on the docker host. For exam-
ple, an attacker can craft an image to contain a large file filled
with garbage and when it is extracted, it would fill the host stor-
age to cause a consequence of TC-3 (or disruption) [20]. In
another example, when the malicious image is extracted on the
host filesystem, path traversals can allow the attacker to replace
binaries on the host with binaries from the image [20] causing
the consequences of TC-1 and TC-2.
Tampering the CI/CD pipeline: This threat is due to vulnera-
bility V7. CI/CD pipelining is a popular software development
and deployment pattern used by many enterprises. The two dis-
tinct processes automate the entire flow of software build to
deployment. It starts with code build, test and commit to the
code repository (GitHub), to building container image based
on the code, tags and pushes the container image to the con-
tainer registry (Docker Hub), and finally to deploy the image
as a container in the Docker host. Attacks to the network in
each "pipeline" situated in DF-1, DF-2, DF-3, DF-4, and DF-
5 can result in tampered software artifact and image. There

are limited in-depth studies of the threats and attacks that can
occur during the transportation of the codes and images along
the pipelines in an automated CI/CD workflow. Martin et al.
[20] did a comprehensive study in the vulnerability analysis of
container in three use-cases - microservices architecture, vir-
tual environment deployment, and cloud provider using it as
container-as-a-service. Somya Garg and Satvik Garg [97] de-
scribed the mechanism of CI/CD using Docker and listed some
common container security best practices in the use of names-
paces, cgroups, and Linux capabilities. There is an opportunity
for more research works around the security aspect of the en-
tire CI/CD process. The consequences of this threat are TC-1,
and potentially TC-3 if the network connection of any of the
pipelines is disrupted.
Tampering application codes at Docker Hub/Github: The ap-
plication code on DS-2 may be tampered with by attackers to
include vulnerabilities. Docker Hub was attacked in such way
before, and the usernames and hashed passwords of 190,000
users were exposed [21]. The breach can result in the attacker
accessing a user’s application image and tamper with its codes.
If the image is not signed, the change will not be detected dur-
ing download. In addition, Docker images may contain inher-
ent vulnerabilities which the developers are not aware of until
they are deployed in a production environment. Furthermore,
Docker Hub hosts many third-party applications used by or-
ganizations. For example, the SolarWinds hacking [98] inci-
dent showed that the APT group successfully tampered with
the codes of Orion which was used to monitor and to manage
network resources. The tempered patch was delivered to many
organizations resulting in the sensitive information disclosure
and loss of confidentiality [99]. A study has shown that the of-
ficial and community images contain an average of 180 vulner-
abilities and 50% of these images have not been updated [100].
It takes an average of 181 days to fix the vulnerability and an
additional 422 days on average to update the image [22], and
this presents a window for an attacker to exploit the vulnera-
bility. This threat is attributed to vulnerabilities of V2 and V4.
The consequences are TC-1 and TC-2.
Tampering image during image build: Due to the vulnerabil-
ities of V2 and V3 where an image is freely uploaded without
any checks and controls, it can be tampered without being dis-
covered. During the image build at P2, an attacker may inject
malicious commands or vulnerable components into the image
file. The image may continue to be signed and appear legiti-
mate to the developer [23]. The tampered image can cause the
deployed containers at P-4 and P-5 to perform malicious acts
to the host or other containers residing in the same host caus-
ing the consequences of TC-1, TC-2 or even TC-4. Developers
rely on open source libraries when developing their applica-
tions. A commercial study finds that seven in ten applications
use at least one open-source library with a security flaw [101],
and that the library vulnerabilities increase by 88% over a two
year period [102]. Palo Alto Networks conducted a study which
found that 96% of third-party container applications deployed
in the cloud contain known vulnerabilities [103]. The most re-
cent and prominent library vulnerability is the Apache Log4J
Java-based library whose vulnerability to log4shell allows an

8



attacker to perform a remote code execution when it is used for
logging function [104]. The attack surface is further expanded
if the libraries have their own dependencies on codes from other
libraries. The malicious libraries in a deployed container at P-
4 and P-5 will interact via the Docker daemon at P-6 to gain
unauthorised access to the OS kernel. These threats will lead to
the consequence of TC-1, TC2, and even TC-4 when the host
kernel is under control.

3.3.3. Repudiation
Repudiation is associated with an attacker claiming that

something which is done is not performed by him. This at-
tack violates the security property of non-repudiation. In the
following, we discuss the main repudiation threats in container
systems.
Disabling logging functions: An experienced attacker will
cover his track to avoid detection and attribution. The attacker
may attack the audit mechanism and attempt to delete or mod-
ify the logs stored in element P7 in Figure 1. He may disable
the logging function using "Auditpol" in Windows systems or
"auditctl" in Linux systems. He may delete the logs with clear-
logs.exec in Windows systems and shred tools in Linux systems
[105]. The consequence is the disruption of logging activity.
Modifying log data: The log files in Docker can be found in
/var/lib/docker/containers directory on the host system [106]
and they can be modified by the attacker. This threat is pos-
sible due to the vulnerability of V9 and V10 as the container is
dependent on the Linux host for logging activities and storage.
At this point we have not found any reports that describe a real
attack event on Docker logs. The consequence is deception by
modifying the log data.
Overwriting log disk space: A container utilizes the memory
and storage space of the host and this vulnerability is aligned
with V9 and V10. A container is enabled with the capability
CAP_AUDIT_WRITE to record activities and events into the
kernel audit log [107]. The kernel audit log is stored on the disk
in the host at P-7 and the attacker container can write massive
amount of junk data onto the disk and overwrite the valid logs
recorded by the victim container [24]. This attack can cover
the tracks of a malicious action and prevent the victim from
accessing valid logs to perform investigation. This threat will
result in deception as the real logs are overwritten.

3.3.4. Information Disclosure
Information disclosure is allowing unauthorized entity to ac-

cess data, information, processes or networks which he is not
allowed to. This attack compromises the security property of
confidentiality, and the following are a list of information dis-
closure threats in containers.
Weak access control of GitHub and Docker Hub: Weak access
control of GitHub (DS-1) and Docker Hub (DS-2) allows an at-
tacker to access information which he is not authorised to do
so. There have been several security breaches in GitHub where
identity keys and data information have been stolen. For ex-
ample, developers from Starbucks expose API keys in GitHub,
which can allow an attacker to access its active directory man-
agement platform [108]. Starbucks later removed the reposi-

tory and revoked the API keys. Another attacker got access
into CircleCI’s user data which include their GitHub’s user-
names, emails, repo URLs, branch names, organization names
and repo owners [109]. This prompted CircleCI to enforce two-
factor authentication (2FA) for their account holders. Another
attack involved gaining access into all the Git hosting services
including GitHub, GitLab, etc. to steal source-codes and de-
manding ransoms from the owners [110]. Some of the vic-
tims had admitted to using weak passwords and forgetting to
remove access tokens for old apps. Recently, millions of Brazil-
ian COVID-19 patients’ personal private information (includ-
ing the Brazil’s President, ministers and provincial governors)
were exposed when a spreadsheet which stored the login cre-
dentials of the government healthcare systems were exposed by
a GitHub user [111]. The source codes of Nissan were leaked
and exposed from a Git server when its developer secure it with
its default username and password combo of admin/admin and
they were easily cracked by attackers [112]. Mercedes Benz’s
smart car components source code were leaked when an out-
sider successfully signed up for an account in its Git web portal
using a non-existent Daimler corporate email [113]. In addi-
tion to the easy access into GitHub account, an inexperienced
developer may make a change in a source code file and unknow-
ingly commit and upload all other files (which include sensitive
ones) in the same folder into GitHub. An attacker who breaches
a Github account can access these sensitive files. It was also
found that SolarWinds developers’ credentials were possibly
leaked from GitHub that could have resulted in attackers gain-
ing access to the codes and leading to the infamous SolarWinds
Orion hack [114]. The access control of Docker Hub at DS-
2 can be exploited and sensitive data be exposed. In 2019, a
database of 190,000 users’ usernames and their hashed pass-
words in Docker Hub was hacked into by attackers [13]. On
separate occasions, attackers managed to steal the credentials
from the cloud providers and took control of the container in-
stances which were owned by Aviva, Gemalto and Tesla and
used them for crypto-currency mining [25]. This threat can be
attributed to vulnerability V1 which is due to a non-stringent
credential and access control measures. The consequence is the
unauthorized disclosure of sensitive information.
Sensitive parameters to access the host: The run-commands
used in P-3 to run a container may contain sensitive parameters
which allows an attacker that develops the container image to
gain access to the user’s host and its data. These parameters
are not usually detected by the security scanner as they are not
malicious in nature. For example, a user may run a container
command with “- -privileged” to access certificate on the host
to spawn a container [15]. The use of such "sensitive" param-
eter will allow the container to gain root access to the host and
this can be exploited by an attacker [22]. Another example is
the use of “- -volume” and “-v src:dest” that allows a container
to gain access to “src”, which is a volume in the host and as a
result allows an attacker to upload data in the host to a online
repository [22], resulting in threat consequence of TC-1. In
some instances, there may be a need to configure the parameter
of “- -pid=host" within a container in order to run debugging
tools, like strace or gdb [115]. Such configuration allows the

9



container to share the host’s PID (process ID) namespace. If
an attacker gains control of the container, he will be able to
view all the other processes running on the host. Armed with
info of the PID, along with "owner" and path of the executable
file, the attacker can conduct attack to other containers and the
host [22]. This threat is attributed to vulnerabilities V10 and
V12 which is due to the common Linux kernel shared by mul-
tiple containers. Due to vulnerability V10, the configuration
options of the Docker engine/daemon at P-6 can provide access
to the host OS kernel. This can be achieved with the options
of “-net=host”, “-uts=host”, “-privileged”, and additional “ca-
pabilities”. The option “-uts=host” can allocate the same UTS
namespace for the container and the host which allows the con-
tainer to see and change the host’s name and domain [20]. The
capability “-cap-add=SYS_ADMIN” can enable a container to
remount /proc and /sys sub-directories in read/write mode, and
change the host’s kernel parameters [20], leading to potential
threat consequences of TC-1 and TC-4.
Leakage of information between containers: Containers that
reside in the same Linux host and share the OS kernel (P-7)
can leak information to each other via storage path mapping,
port mapping, layer-2 network connection, and covert chan-
nels. This can enable an attacker of one container to gain access
into another co-locating container [24]. Some of the methods
include exploiting the openly observed globally used memory
(GUM), which an attacker can obtain visibility of the victim
container’s memory information [24]; accessing the global vari-
able of inode number (or index node) allows an attacker con-
tainer to know the metadata of a victim container’s process file
[24]; and an attacker container can read into the kernel message
buffer (KMB) which is written into by a victim container with
the CAP_SYSLOG enabled [24]. This is again due to the vul-
nerabilities V10 and V12 and the consequence is the leakage of
unauthorized information (TC-1).

3.3.5. Denial of Service (DoS)
The denial of service causes a service to be disrupted or de-

graded such that users cannot access the service. This attack
violates the security property of availability. Most of the threats
listed below are attributed to the vulnerability V10 which is the
close connection between the container and the host kernel un-
like a virtual machine which is separated by the VM kernel
and the hypervisor. The attack involves abnormally consum-
ing resources such as CPU, memory, storage, networks, etc.
The threat consequence is mainly TC-3. Below, we discuss the
main DoS-related threats in the containers context.
Inaccessibility of GitHub or Docker Hub: The attacker may
cause GitHub (DS-1) or Docker Hub (DS-2) to be inaccessi-
ble to developers for code updates and container deployments.
While the infrastructure facilities of GitHub and Docker Hub
are not publicly known, it is assumed that they are highly re-
silient, secured and are distributed across multiple sites like the
commercial cloud computing services, such as AWS, Microsoft
Azure or Google Cloud. Therefore, at this point there is little
evidence to show that the services from GitHub or Docker Hub
have been disrupted due to attacks on their server infrastruc-
tures. An article was written that painted a scenario where a

DDoS attack targeted at the control traffic between the Network
Operations Center (NOC) and the data center’s Heating, venti-
lation, and airconditioning (HVAC) could potentially result in
overheating and to cause a data center outage [116]. However,
in reality, there had also been data center outages that resulted
from overheating due to equipment failures [117], service com-
ponent failures such as the DNS outage in Azure [118], Kinesis
disruption in AWS [119], and other non-attack related causes.
Service disruption at host via OS kernel: From Figure 1, the
container via the Docker engine (P6) communicates with host
OS kernel (P7) via a series of system calls. By default, each
container has access to the host’s CPU cycles and memory with-
out limit [120]. An attack on the OS kernel will cause the
disruption of services to the host’s computing resources like
the CPU, memory, storage, and others resulting in the threat
consequence TC-3. Attacks utilizing exceptions handling, logs
writing, and disk write-backs can impact CPU, disk I/Os and
memory performances. The Linux kernel will trigger an excep-
tion handler when exceptions such as faults (e.g., divide error)
and traps (e.g., overflow) occur. When one of them happens,
the kernel will send a signal to the process which generates it,
and it will take steps to recover or to abort [121]. The excep-
tion will trigger the core dump kernel function to generate a
core dump file which is used for debugging. It is shown that
when a container keeps raising exceptions (example div 0) and
triggers the core dump, the host system CPU and memory per-
formances are reduced by 95% [26]. Therefore, an attacker can
create a DoS attack on a host using this exploitation and thereby
impacting the performance of all containers which run on this
host. System logging in Linux at P-7 is typically performed by
journald which is a part of systemd, an init system and system
manager [122]. As a system service, journald not only collects
system and kernel log messages, but it also collects three types
of log messages in a container. They are switch user (su), add
user/group, and exception [26]. As journald is a system ser-
vice, its resource utilization will be taxed on the host and is not
controlled by the container cgroups. It is shown that the three
container logging operations performed by journald can cost
up to 20% extra CPU utilization and an average of 2MB/s IO
throughput [26]. Therefore, this is an exploit which an attacker
can use in a container to overwhelm the host resources which
in turn impact the performance of the other containers causing
a TC-3 consequence. To improve performance, the Linux ker-
nel writes data in the cache memory and later performs a disk
writeback of the data into the disk at the host. However, data
may be lost or corrupted when the system crashes, and one way
for a user to invoke a writeback is to run a system call “sync”,
which writes any data stored in the cache memory out to the
disk [123]. It is shown that when a malicious container keeps
calling “sync” while another victim container performs write
operations, it leads to high CPU wait time due to the combina-
tion of sync and write operation. The victim I/O performances
(such as sequential read /write and random read/write) are re-
duced to almost 1% [26]. This shows that an attacker can launch
a DoS attack on the host and hence on another container by ex-
ploiting the data writeback mechanism to the disk.
Inaccessibility of the data flows: As shown in prior threats tar-

10



geting the CI/CD automated integration and deployment pro-
cess (due to vulnerability V7), an attack in any of the data flow
connections at DF-1, DF-2, DF-3, DF-4, and DF-5 will cause
disruptions to one or more of the processes of code commits,
images build and upload, images download and containers de-
ployment.

3.3.6. Elevation of Privilege
Elevation of privilege increases the level of authorization of

an attacker such that he can perform operations or access infor-
mation which he is not allowed to do so. This attack violates
the authorization property of security and leads to the conse-
quence of TC-4. A container is vulnerable to a host take-over
attack because of vulnerabilities V10, V11, and V12. This is
due to its tight integration with the Linux kernel, sharing it with
other containers, and inheriting vulnerabilities that frequently
discovered in the Linux operating system. Below, we discuss
the specific elevation of privilege threats in containers.
Run container as root: At P-2 in Figure 1, there are some con-
siderations when configuring the Dockerfile to build a Docker
image. By default, the Docker container runs as root since the
Docker daemon needs root privileges to modify the host filesys-
tems to run [124], unless a developer intentionally configures it
otherwise. As such, an inexperience developer may pull and
deploy container at P-3 in a root privilege mode. This allows an
attacker to copy files from the host to the container and access
them, and launch a remote command execution (RCE) attack
[27].
Gain root access via misconfigured networking: A newly cre-
ated container will be configured with the default bridge net-
work at the Docker daemon networking stack at P-6. The de-
fault bridge network allows other unrelated containers or ser-
vices to communicate with it remotely [125]. An attacker can
exploit this container and open a listening port to other contain-
ers in the same network. When it discovers an open port, it
will connect to its Docker daemon and instruct it to download
and run a malicious script [126]. The malicious script can po-
tentially disable the security system of the host, create a root
user, and download and install a malicious program such as a
crypto-miner to perform crypto currency mining [126].
Use of system calls to gain privilege: During the starting and
running of application containers, system calls are made from
the containers to the host kernel at P-7. It is noted that 331
system calls are allowed by default, but an experiment with a
MySQL database container show that only 116 system calls
are needed in the booting phase and 58 system calls are used
in the running phase [49]. In another experiment using the
Apache web server, 47 unnecessary system calls are enabled in
the container, and they are found to be vulnerable to exploita-
tion e.g., prctl() in CVE-2020-10768 and setsockopt() in CVE-
2021-20239. Therefore, a high default number of system calls
increases the attack surface and the unnecessary system calls
can be used by malicious processes to gain elevated privilege in
the host.
Kernel privilege escalation attack: A study has shown that an
attacker can make use of a compromised container to launch

attack on the host kernel at P-7 to escalate its privilege. Ex-
ploits contained in CVE-2017-7308, CVE-2017-5123, CVE-
2016-8655 (or Exploit-DB IDs of 41994, 43127, 43029 and
40871), CVE-2021-3344, CVE-2021-4154, CVE-2022-29179
show that privilege escalation exploits can overcome the de-
fault security mechanisms in “Namespace”, “Cgroup”, “Capa-
bility”, “Seccomp” and “MAC” to launch a malicious shellcode
in the kernel and in supervisor mode [33]. This is carried out
by bypassing the KASLR (Kernel Address Space Layout Ran-
domization) to obtain the address of the critical kernel static
functions, and to launch attacks like “use after free”, race con-
dition, buffer flow etc., to enable the overwriting of the pointers
of the kernel functions. The attacker then overwrites the ker-
nel functions’ pointers to disable the CPU protections of SMEP
(Supervisor Mode Execution Protection) and SMAP (Supervi-
sor Mode Access Protection) and to point to a malicious user
space function or shellcode, which invokes a kernel function
commit_creds() to apply for root credential [33]. Another at-
tack leverages the "time of check to time of use" (TOCTOU)
vulnerability to gain root access to the host. This happens when
a user executes a "docker cp" command to copy contents from
the container to the host filesystem and the attacker adds a sym-
link component to the path after the resolution and before the
operation. This results in resolving the symlink path compo-
nent on the host as root allowing it to read and write to any path
on the host [127].
The DFD diagram with the overlay of the vulnerabilities and
the potential STRIDE threats is shown in Figure 2.

4. Existing Mitigation Strategies and Their Limitations

In Section 3, we discussed the potential threats and vulnera-
bilities we have identified using the STRIDE framework. This
helped us to also explore the respective mitigation strategies
mentioned in the literature as well as to identify research areas
that have not yet been explored. Below, we will discuss the
identified mitigation strategies and their limitations to address
the corresponding security threats in containers.

4.1. Multi-Factor Authentication Systems

One of the practices to harden access to an account is us-
ing multi-factor authentication (MFA) systems. It is found that
99.9% of the accounts that were breached before did not use
MFA, and that a basic 2FA using SMS could stop 100% of auto-
mated attacks and 96% of phishing attacks [128]. Docker Hub
offers 2FA using mobile phone authenticator application (e.g.,
Google Authenticator) or Yubico Authenticator with a Yubikey
[39], while GitHub offers 2FA with applications like Authy,
Duo Mobile, Google Authenticator, Microsoft Authenticator,
etc. [129]. In addition, we should enforce policies like strong
passwords and regular rotation of passwords. Microsoft has
listed useful password guidelines like banning common pass-
words, not to re-use organization passwords for non-work re-
lated purposes, enable risk-based MFA, and others [130]. These
measures can help prevent attackers from using stolen creden-
tials to access codes and images in containers.

11



Figure 2: DFD of the container system with vulnerabilities and potential threats

Limitations: While 2FA improves the security by adding a
layer of authentication to the password controls, it does have
several disadvantages. 2FA increases the time and cost to ac-
cess the accounts and this can be significant if an organiza-
tion has thousands of employees [131]. By default, 2FA uses
SMS to text the verification code to a user’s phone. An attacker
can easily perform SMS attack on a compromised phone or the
messaging center to retrieve the verification code that is not en-
crypted [131]. While using a mobile authenticator app is safer
than 2FA with SMS, there is a report that shows attackers steal-
ing one-time passcodes generated by Google Authenticator on
a mobile phone [132].

4.2. Image Security
Securing container images is one of the existing mitigation

strategies against threats in containers. Below, we discuss the
main image security strategies applicable in container systems.
Reducing attack surfaces: It is recommended that an image
be kept minimal so that the attack surfaces can be reduced. A
couple of best practices in this regard include using multi-stage
build feature that enables the developer to create an intermedi-
ate container with the required tools, and selectively copy the
artifacts to the final image with only the minimal required bina-
ries and dependencies [40]. The other practice is to use distro-
less5 images as they do not contain package managers, shells,

5https://github.com/GoogleContainerTools/distroless

and others so that the image is kept minimal [41].
Signing images: It is advised that a developer digitally signs
his image with Docker Content Trust [42] that is attached to the
Notary server,which is used for validating the integrity of the
images [133]. Consequently, it is a good practice for develop-
ers to verify the authenticity of the images before pulling them
by enabling Docker Content Trust [42]. In addition, the devel-
oper should ensure that the hash of the image is the same at the
Docker Hub as well as when it is deployed to the Docker host.
Another effective mitigation method is to enable the Linux In-
tegrity Measurement Architecture (IMA), which would validate
the file signatures against pre-installed certificates and denies
unauthorized file from being executed. It is shown that IMA
can prevent a code that is not signed or signed with unknown
key, or a modified code with an invalid signature [43].
Vulnerability scanning: After building the image and before a
developer pushes the image to Docker Hub, one good practice is
to scan the image by baking a scanning command in the Dock-
erfile or running a script at P-2. Another good practice is to scan
the images before deploying them. Docker Hub provides vul-
nerability scanning but only to paid subscribers under the Pro
or Team plan [134]. However, there are several open-source
container scanners in the market and these are Anchore, Clair,
Dagda, OpenSCAP, Sysdig Falco, and others [44]. In addition
to static scanning, we can also perform dynamic analysis by
running the container in a Docker-in-Docker sandbox mode and
scanning it with tools such as VirusTotal (a collection of anti-

12



virus tools) and examining the collected tcpdump/log files for
file changes, network traffic, and list of processes [45]. For ap-
plication code scanning, GitHub offers CodeQL [135] and inte-
gration to third-party code scanning tools, such as Checkmarx,
Synopsys Intelligent Security Scan, Veracode Static Analysis,
and others [136] for identifying vulnerabilities in the codes.
Limitations: While signing the image is an important safety
measure, the private keys used for signing can be stolen. There
have been several instances and methods deployed to steal pri-
vate keys [137], [138], [139], and therefore more research can
be done to protect them. With respect to container scanners,
Javed and Toor [140] used Claire, Anchore, and Microscan-
ner to investigate the quality of the container scanning and
found that they were at most 65% accurate in the detection rate,
leaving about 34% of the vulnerabilities being undetected and
passed through and being deployed in production environment.
The container scanners depend on the CVE data from public
databases such as the National Vulnerability Database from the
National Institute of Standards and Technology (NIST), Red
Hat Enterprise Linux, Debian, and others to check if an im-
age has vulnerabilities. As such, the scanners are not able to
detect security flaw that has not been publicly disclosed or if
the image is rebuilt from an open-source software package and
given a version number which is not tracked in the vulnerability
databases [141]. Another limitation is the disparate processes
and tools across the container scanning workflow and there is
no one integrated tool which can perform static and dynamic
scans.

4.3. Security Patching

It is advisable for developers to use verified and official im-
ages from trusted repositories and providers. A study [30]
shows that "official" images are the most secure among image
types, which include "verified", "certified" and "community".
Both the "official" and "verified" images are the most updated,
while the "community" and "certified" images are the least up-
dated ones. The developers should update their images with
the latest security patches and rebuild the images periodically.
NIST recommends the following scenarios and the urgency of
patching [46]. Routine patching is the standard procedure to
patch on a regular release cycle (e.g. Patch Tuesday). Emer-
gency patching is carried out quickly to address extreme sever-
ity vulnerabilities and exploits. Emergency workaround is per-
formed prior to the vendor releasing a patch and it may include
roll back exercises. Lastly, it can involve the isolation of un-
patchable assets if the systems cannot be easily patched [46].

IBM researchers Araujo and Taylor [142] developed a just-
in-time (JIT) patching framework called "Insider" for patching
running legacy application processes. This was done by inject-
ing and compiling the code inside the running processes while
sandboxing malicious processes for threat investigations. How-
ever, it is not developed for a containerized environment. A
containerized application self-patch framework was developed
by Tunde-Onadele et al. [143] that performed attack detection
by using machine learning methods on the system calls; attack
classification by comparing it to the CVE database; and finally

patch execution by downloading the latest files to update the
image and spinning new application container.
Limitations: At this point, there is no known automatic or JIT
patching mechanism developed for the container. While rapid
patching is important to address vulnerability in the container
before an attacker gets into it, it may cause compatibility is-
sue with the application without first testing it in a lab envi-
ronment. Therefore, a reliable and rapid patching framework
for containerized application is a gap which should be tackled
quickly. However, the SolarWinds hacking incident has shown
that patching and updating the software can have an adverse ef-
fect as the latest version of software can contain vulnerabilities
[98].

4.4. Minimise Administrative Privileges

One way to mitigate against attacks on sensitive parameters
is to design a mechanism to detect sensitive parameters and to
alert the user of the risks before he executes the run command.
As far as we know, there is no such mechanism available to per-
form this function in containers. There are recommendations by
Center of Internet Security (CIS) to limit harmful docker run
options and some examples are, hardening host configuration,
limit file permissions, configure TLS for Docker Hub and con-
trol socket, and many others [20],[47]. There are also methods
to configure a container to run in a "rootless mode" and some
of these are proposed by Docker [48], Bitnami [144], Redhat
[145],[146], and others.

System calls related vulnerabilities could lead to privilege es-
calation attacks. Almost 17% privilege escalation attacks listed
in the Exploit Database maintained by Offensive Security were
due to system calls [147]. The threats of mis-using of the sys-
tem calls in the containers can be mitigated using the following
methods. The SPEAKER mechanism developed by Lei et al.
[49] traces the systems calls needed in the booting and running
phases of a container and then dynamically modifies the secu-
rity filter to reduce the number of system calls in each phase,
thereby reducing the attack surface which is exposed by the sys-
tem calls.

Another method, called Classified Distributed Learning
(CDL), which is developed by Lin et al. [148], uses the ma-
chine learning algorithm to detect anomalous behaviour of the
system calls and to raise an alert if it differs from the normal
pattern. The system calls are collected from running containers
and they are classified by application class using the random
forest technique and subsequently grouped together. The au-
toencoder neural network is then used to train on the system
calls data set and the model is applied to new system calls flow
to detect anomalous behaviour [148]. The accuracy rate is 74%
when applied to 24 commonly used applications with 33 known
vulnerabilities.

Another method of anomaly detection developed by Abed et
al. [149], uses the Bag of System Calls (BoSC) technique. This
method is first introduced in 2005 to improve the then widely
used fixed-length contiguous subsequence models in intrusion
detection systems (IDS) [150]. It is subsequently applied onto
the Linux containers to detect anomaly in system calls [149].

13



The method collects “bags of system calls” (BoSC) in a nor-
mal container operation and stores them in a database. In a new
container operation, the new bags of systems calls are compared
against the database of BoSC and if there are mismatches which
exceed a certain threshold, an anomaly is assumed. Each BoSC
consists of an array of distinct system calls’ frequency of oc-
currences [149]. The method is shown to be accurate to detect
anomaly but it is only tested on a MySQL container using SQL
injection attacking tool. It has not been proven to work in other
use-cases.

Rastogi et al. [151] developed a method called Cimplifier,
which applies the principle of privilege separation and it aims
to partition a container into smaller containers which isolate
from each other and only equip with the necessary resources
and they communicate with each other when needed. Lastly, it
is also a good practice to limit the permissions of capabilities in
the container to those which are necessary so that attackers do
not take advantage to exploit them to gain control of the host
[152].
Limitations: The system calls anomaly detection techniques
proposed are either not highly accurate or only tested on a
specific use-case. There is a need to develop higher accuracy
anomaly detection method which can apply to most use-cases
and applications.

4.5. Proper Isolation

The cgroups of the Linux kernel are primarily functioned to
control and limit the underlying host resources for each con-
tainer. Within the cgroups, there is the cpuset subsystem which
a developer can configure to bind a container to a set of CPU
cores so that the CPU resources are protected from DoS attack
[153]. It was also demonstrated that the use of Linux memory
bandwidth management module MemGuard can limit the CPU
access to the memory and can thus prevent a DoS attack on
the memory [153]. There are numerous security best practices
that can mitigate DoS attacks, e.g., using read-only filesystems,
limiting kernel calls, restricting networking and inter-container
communication, not expose Docker daemon socket, limit resou-
cres, and others [87], [152].
Limitations: The use of cgroups and namespace isolation meth-
ods in containers have several limitations. A recently discov-
ered CVE vulnerability6 showed that a use-after-free flaw can
occur in the cgroupv2 subsystem during system reboot. This
flaw would crash the system or escalate its privileges [154].
The other limitation of container isolation is that the current
isolation measures do not truly sandboxed containers that share
the same host [155]. Consequently, numerous container escape
vulnerabilities have been discovered, such as CVE-2016-5195,
CVE-2016-9962, CVE-2017-5123, CVE-2018-6552, CVE-
2019-5736, CVE-2020-3514, and CVE-2022-0811. Gao et al.
[26] also presented several exploiting strategies to escape the
resource protection set up by the cgroups. Furthermore, other
researches [20], [38] showed that the current container isolation

6https://nvd.nist.gov/vuln/detail/CVE-2020-
25220#vulnCurrentDescriptionTitle

system cannot effectively isolate the network as the same net-
work bridge is shared by the containers, causing ARP poisoning
and MAC flooding attacks on the containers.

4.6. Prevent Confidential Data Leaks
To mitigate against credentials exposure, it is a good prac-

tice not to store unencrypted secrets in Git repositories, but to
use tool like git-secret to encrypt passwords, secret keys and
sensitive data [156]. Within Docker Hub, developers can store
secrets in credential stores such as D-Bus Secret, Apple macOS
keychain, Microsoft Windows Credential Manager and "pass"
[157]. The recommendations to strengthen passwords and pro-
tect access control as described in section 4.1 are applicable
here.

When committing and uploading modified files into GitHub,
one good practice is to use ".gitignore" feature to specifi-
cally exclude certain files from being "committed" into GitHub
[158]. This will prevent sensitive files which reside in the same
folder as the program code to be uploaded into GitHub. An-
other practice is to use ".gitignore" to whitelist the files (instead
of exclude) to commit [159].
Limitations: Credential storage secrets manager or vault is not
bullet-proof. CyberArk had tested a method to steal creden-
tials stored in Local Security Authority (LSA) Secrets registry
and to achieve lateral movement throughout the system [160].
Despite having solid vaults, confidential data and credentials
can be leaked if the user share credentials such as committing
access keys, passwords, and secrets to source control reposito-
ries. A compromised user’s endpoint devices such as notebook,
desktop, and mobile device will also allow an attacker to find
secretive credentials. MITRE has listed a number of credentials
dumping methods that can be exploited by attackers [161].

4.7. Implement Network Controls
In order to prevent DNS spoofing attacks, it is a good practice

not to use Docker’s default bridge docker0 but to use Docker’s
user-defined network [47]. The developer using the end point
device should encrypt the network with a virtual private net-
work (VPN) and to regularly flush the device’s DNS cache
[162]. The VPN is also important to secure the communication
between the containers [163]. To protect the network connec-
tivity from DoS attack, it is a good practice to turn on the intru-
sion detection and prevention systems (IDS and IPS) to detect
and prevent such attacks. Lastly, it is recommended not expos-
ing the Docker daemon socket (the main entry point for Docker
API) [152] and other unnecessary ports (e.g., SSH Port 22).
Limitations: The use of VPN can increase network latency and
introduces delays that are bad for ad-hoc transient container
applications such as event-triggered serverless functions or In-
ternet of Things (IoT) containers communicating many small
packets rapidly. Therefore, additional research is needed in
network protection for such use-case. IDS and IPS use rule
or signature-based packet evaluation and therefore not effective
against unknown attacks or against an attacker that poses as
admin to "legitimately" log into the system [164]. IDS which
yields many false alarms can lead to "alert fatigue" while IPS
can consume much network bandwidths.

14



4.8. Robust Log Monitoring

The mitigation measures need to enable the logging system
to be robust and immutable. One method is the use of message
authentication codes (MACs) and digital signatures to produce
the secure logs, and to apply Bitcoin blockchain technique to
produce a distributed log immutabilization solution [165], thus
ensuring the logs’ authenticity and non-repudiation. To resolve
the log storage problem, one practice is to use logging drivers
to read the data directly from the Docker container’s stdout and
stderr ouput and to forward the logs to host machine or other
endpoints such as syslog, journald, gelf, and others [166].
Limitations: When running the blockchain operation, there is
transaction fees (at 0.00016 BTC/KB or USD6.83/KB as of
25th Sep 20217) and is not sustainable in the long run. Other
limitations when using the logging drivers are that the capacity
limit of the local storage will determine the size of the log file
[86]. If the logs are sent remotely, a network failure will cause
the lost of the logs [167].

5. Summary of Results and Future Research Directions

5.1. Summary of Results

The overall containers security analysis we conducted
using the STRIDE framework is summarized in Table 3. It is
observed that each of the STRIDE threat occurs in several DFD
elements and results in multiple consequences with the aim to
deceive, disrupt, disclose information, or to usurp control of the
system. Spoofing is about using a fake identity to gain access
into the system. GitHub (DS-1), Docker Hub (DS-2) and the
containers (P-4, P-5) are the obvious targets for attackers to
exploit and to introduce malicious contents in order to deceive
(TC-2), retrieve info (TC-1) and to control the systems (TC-4).
The efficient and ease-of-use characteristics of the container
systems turn out to be the vulnerabilities for the threat to be
successful. The ease of access into the code repository and
image registry, unrestricted push and pull of the images, and
the efficient sharing of host resources by several co-locating
containers become the vulnerabilities.

Tampering aims to modify the system or data with the
intention to deceive (TC-2) the victim, steals the info (TC-1),
disrupts the service (TC-3), and to gain control of the system
(TC-4) via the tainted images. This threat has the widest
impact to the DFD elements including the data stores of DS-1
and DS-2, all the data flow (DF) links, and the process of image
build (P-2). In addition to the vulnerabilities listed earlier, the
lack of container image governance is another vulnerability.
Docker Hub is an open registry which is accessible by a
private (paid membership) or community user. The images
are freely uploaded and stored with no patch management or
threats scanning rigor. Its integration into the automated CI/CD
pipeline process further increases the attack surface.

Repudiation occurs when an attacker denies an action which
he has performed. The logs of a container is not stored in

7https://bitinfocharts.com/comparison/bitcoin-transactionfees.html

itself as the container is stateless and therefore the kernel will
store the logs in the host storage (vulnerability V9). Due to
the shared resources characteristic of co-locating containers
(V12), an attacker can use a compromised container to access
the kernel (P-7) to disable, modify or overwrite logs at the host
storage.

Information disclosure causes information to be revealed
to attackers. The attackers will attempt to gain access to data
stores at GitHub (DS-1) and Docker Hub (DS-2) to steal
information about accounts, source codes, sensitive data, con-
figuration files, etc. A skilled attacker can exploit the sensitive
parameters used during the container configuration (P-3) to
gain access to files in the host. He can also use the common
shared network at the kernel (P-7) to connect two co-locating
containers and to exchange unauthorised information.

Denial of service (DoS) makes the system inaccessible for
use. DoS can occur when an attack happens at each of the
connecting "pipe" (DF-1,2,3,4,5) that links the elements in
the container DFD system. A breakage in a connection will
result in a change or patch in the application code not being
updated in the final image and not deployed or updated in the
application container. Proven tactics targeted at the resource
isolation measures in the kernel can cause the host resources
(eg. CPU, storage) to be inaccessible.

Elevation of privilege grants the attacker access and control
of the system. This is a serious threat which allows the
attacker to take control (TC-4) of the host and carry out further
damages. The tight integration of the container with the Linux
kernel is a critical vulnerability (V10, V11, V12). Therefore,
an attacker with access to a compromised container can utilize
the Docker daemon (P-6) via exposed network ports and
privilege system calls to attack the kernel (P-7) to obtain root
control of the host.

5.2. Future Research Directions

Based on the above analysis, there are some areas which are
open for further research. In our STRIDE threat modeling ex-
ercise, we focus on the “supply chain” from the code reposi-
tory (using GitHub), to the image registry (Docker Hub), and
finally to the Docker host with emphasis on the six elements of
STRIDE (Spoofing, Tampering, Repudiation, Information Dis-
closure, Denial of Service, and Elevation of Privilege). How-
ever, the wider and more holistic container ecosystem is con-
nected and overlapped with the cloud and IoT ecosystems. Con-
tainers are used to build the cloud and IoT systems, and at the
same time the cloud and IoT are using containers to run appli-
cations [168].

Vulnerabilities in IoT containers Gartner predicts that the
number of IoT devices will double every five years and it will
reach 15 billion IoT devices by 2029, and they pose security
risks to the enterprise infrastructures [169]. Therefore, this is an
important field to study the expanded attack vectors presented
by the relationships between the container, cloud and IoT sys-
tems.

Enhancement of container engine security In this paper,

15



we use Docker as the representative container engine for secu-
rity survey as it is the most popular and pervasively used by en-
terprises and businesses. However, a couple of reports state that
an alternative container engine called Kata8 container which is
developed by IBM and Hyper.sh can offer better security isola-
tion while maintaining efficiency and performance and it has a
strong reference customer in the form of Baidu AI Cloud [170],
[31], [171]. Therefore, another direction of study is a compre-
hensive comparison of the security and performance between
Kata container and Docker container and investigate the pos-
sibility of a Docker substitute or areas for Docker’s security
enhancements.

Security of alternative container technology In recent
years, there have been studies on Unikernel and its advan-
tages of small footprint, speed and a reduced attack surface
[172],[173],[174],[175],[176]. This technology presents a use-
ful area of study to determine the feasibility of replacing the
container technology in order to reduce the vulnerabilities faced
by the current container technology.

Vulnerabilities of containers using different kernels There
are no comparison studies of container security between one
which is based on Linux vs one based on Windows. Both
the Linux and Windows kernels are designed differently and
there is a large Windows application installed base and there-
fore it is of interest to know the comparative security strengths
and weaknesses between the two. So far, most of the secu-
rity analysis of the Windows and Linux operating systems were
carried out several years ago and were considered out-dated
[177],[178],[179],[180],[181].

Evaluation of container scanning tools There is little study
about container vulnerability and threats detection tools and
the evaluations of their performances. To date, there are many
container image scanning tools such as Clair, Anchore, Trivy,
etc. [182] but few research into their effectiveness, their gaps
and their impacts to the container’s security. Javed and Toor
of [140] evaluated three scanners of Clair, Anchore and Mi-
croscanner in terms of the detection coverage and detection hit
ratio for only 59 Docker Java-based images. Tunde-Onadele
et al. [183] compared the detection accuracy of a static scan-
ner (Clair) and a dynamic runtime detection scheme which an-
alyzed the system call features using machine learning meth-
ods, like K-means, Self-Organizing Map and others to detect
anomaly. Therefore, there is a need to study the available vul-
nerability detection methods and tools and to carry out a com-
prehensive evaluation of them.

Vulnerabilities relevant to language-based application
containers The top three programming languages used in
Docker container application images in 2020 are Python, Go
and Javascript and they have been growing steadily since 2015
[184]. There is no known study of the types of threats and vul-
nerabilities that occur in the container and their attribution to
the programming languages. Therefore, it is useful to the in-
dustry for researches to be carried out on the vulnerabilities of
the different language-based applications when deployed in a
container architecture.

8https://katacontainers.io/

An end-to-end practical guide to securing containers
There is no one structured and integrated approach for container
security. Today, each security tool or process only targets a spe-
cific area and to address it independently. For example, in the
code build phase a developer will need to remember to scan the
image, keep credentials in the secret vaults, verify the image
signature and to sign it when pushing it to the registry, and all of
these steps require different tools and processes. During the pull
and deployment phase, a developer will need to scan the image
for new vulnerabilities and to configure least privileges, net-
work segmentation and least kernel interaction (e.g., minimal
system calls) in runtime. The developer will then need to ensure
the integrity of the images (e.g., patch and re-image) throughout
the lifecycle of the container and to run monitoring and logging
mechanisms to keep the container and its users safe. The Na-
tional Institute of Standards and Technology (NIST) published
a comprehensive container security guide in 2017 [185] and it
contained recommendations of best practices for specific com-
ponents in a container architecture but did not provide working
level details and its application in practical use-cases (e.g., via
code repo, image registry, deployment, etc). Therefore, there is
a need for the research community to produce industry relevant
and practical guides for container security.

16



Table 3: Summary of our STRIDE analysis

STRIDE Affected
DFD
Compo-
nents

Vulnera-
bilities

Threat Actions Threat
Conseque-
nces

The Existing Mitigation
Strategies

Limitations of the
Mitigation Strategies

Spoofing

DS-1 V1 Spoof Github account by
stealing credentials to gain
access to GitHub account
and to upload malicious
codes.

TC-1,
TC-2

MFA to protect account,
scan image for vulnerabil-
ities.

2FA increases time and
cost, SMS verification
code can be attacked,
and one-time passcodes
generated by phone au-
thenticator app can be
stolen.

DS-1,
DS-2

V2 Spoof GitHub or Docker
Hub by using DNS hijack &
others.

TC-2 Protect network, use
VPN, sign image, and
scan image.

VPN introduces delay,
and private keys for sig-
nature can be stolen.

DS-2 V2 Spoofing of Docker Hub
account and image by ex-
ploiting typo squatting and
"almost-similar name" im-
age.

TC-2,
TC-4

Use official or verified im-
age, and scan image be-
fore upload to registry or
download for deployment.

Container scanner is
not foolproof and 34%
of vulnerabilities are
undetected.

P-4, P-5 V12 Spoofing of DNS responses
to all the container appli-
cations running on the Ku-
bernetes cluster and to ex-
ecute MITM attack on the
network traffic between the
containers.

TC-2 Protect network, use
VPN, and limit capabili-
ties permissions in con-
tainer (e.g. NET_RAW).

Same as above.

Tampering

DF-4,
DF-5

V5 MITM by attacker to in-
sert malicious image in the
connection between Docker
Hub and the Docker host.

TC-1,
TC-2,
TC-3

Encrypt network, check
for signature in image,
verify hash, and scan im-
age.

Private keys for signa-
ture can be stolen, and
container scanners are
not highly accurate.

DF-1,
DF-2,
DF-3,
DF-4,
DF-5

V7 During the auto CI/CD
pipeline, attacker can insert
tampered and malicious im-
ages into any stage of the
pipeline.

TC-1,
TC-3

Protect network pipeline,
scan code/image at each
stage, sign image and ver-
ify it during deployment.

Container scanners are
not highly accurate.

DS-2 V2, V4 Images in Docker Hub be-
ing tampered after attack-
ers hacked into accounts.
A vulnerability in an im-
age takes an average of 181
days for it to be fixed and
an extra 422 days to be up-
dated.

TC-1,
TC-2

Scan image, sign im-
age, and verify it during
deployment, verify hash,
and regular patching of
image.

Same as above. Patch-
ing is manual, no test-
ing for app compatibil-
ity before patch.

P-2 V2, V3 When the image is built,
malicious commands are
injected into the image or
tampered libraries are used
in the application.

TC-1,
TC-2,
TC-4

Same as above. Keep im-
age minimal, use multi-
stage build, and use dis-
troless images.

Same as above.

Repudiation
P-7 V9, V10 Disable logging, and mod-

ify logs.
TC-2,
TC-3

Use message authen-
tication code (MAC)
and signature. Apply
blockchain to distribute
and immutabilize logs.

Transaction fees in
blockchain is costly in
the long term.

17



P-7 V9, V10 Overwrite log disk space
with junk.

TC-2 Use log drivers to store
logs locally or to remote
endpoints.

Local storage limit log
size, and network fail-
ure causes logs to be
lost.

Information
Disclo-
sure

DS-1,
DS-2

V1 API and identity keys are
exposed for attacker to
take control of accounts in
Github and Docker Hub.

TC-1 Do not store credentials
and secrets in clear, keep
them in "vaults". Use .git-
ignore to avoid uploading
sensitive info during com-
mit.

Credentials in "vaults"
and compromised end-
points can be stolen,
and user’s negligence in
sharing credentials

P-3 V10,
V12

Include sensitive parame-
ters in the run command
when deploying container.

TC-1,
TC-4

Exercise diligence in not
exposing sensitive param-
eters, scan for sensitive
parameters and to raise
alerts.

No significant limita-
tion is reported or ob-
served.

P-7 V10,
V12

Leakage of information be-
tween containers on the
same host.

TC-1 Same as above. Harden
host configuration, limit
file permissions, and con-
figure TLS for connec-
tions.

No significant limita-
tion is reported or ob-
served.

Denial of
Service

P-6, P-7 V10 Service disruption at the
Host via kernel due to
exception handling, disk
write-back, logging, and
others.

TC-3 Hardened configuration
of cgroups to limit host
resources usages eg. read-
only filesystems, limit
kernel calls, limit network
communications, and use
memory management
module like MemGuard.

Cgroups and names-
paces isolation are sub-
jected to container es-
cape and network at-
tacks.

DF-1,
DF-2,
DF-3,
DF-4,
DF-5

V7 Any of the data flow
pipes become disrupted to
perform transmission of
codes/images.

TC-3 Install intrusion detection
(IDS) and prevention sys-
tems (IPS) to protect the
network connectivity.

IDS can result in "alert
fatigue" and IPS takes
up network bandwidth.

Elevation
of Privi-
lege

P-2 V10,
V11,
V12

Run container as root when
it is not necessary.

TC-4 Harden container configu-
ration to just-enough priv-
ileges or run as "non-root
mode".

No significant limita-
tion is reported or ob-
served.

P-6 V10,
V11,
V12

Misconfiguration with net-
work ports open.

TC-4 Scan network ports, do
not expose Docker dae-
mon socket and other un-
necessary ports.

No significant limita-
tion is reported or ob-
served.

P-6 V10,
V11,
V12

Enabling excessive systems
calls

TC-4 Trace system calls and
reduce unnecessary ones,
analyse systems calls
traffic and use Machine
Learning techniques to
detect anomaly, apply
principle of privilege
separation and partition
container to smaller iso-
lating containers.

Current ML techniques
are not highly accurate
and not tested for most
use-cases.

P-7 V10,
V11,
V12

Memory attack by over-
coming security of Linux
and using TOCTOU tech-
niques.

TC-4 Same as above. Same as above

18



6. Conclusion

The advancement of containers has helped enterprises and
organizations to improve their processes and enable new busi-
ness models. However, its full utilization has been daunted by
the various security risks posed in the containers ecosystem. In
this paper, we first assessed the security landscape in containers.
In particular, we used the STRIDE framework to identify vul-
nerabilities, threats and threat consequences on the entire con-
tainer ecosystem. From our study, we found that many of the
vulnerabilities are due to the containers’ shared access to the
host operating system’s kernel. While there were isolation mea-
sures (e.g., namespaces) and resource control mechanisms (e.g.,
cgroups) in place, these could be breached when misconfigura-
tions and liberal use of system calls and capabilities happened.
From the ecosystem perspective, the numerous external entities
who involved in writing the code, building the image, configur-
ing the installation, setting up the network connectivities, and
eventually deploying the application in production containers
greatly increased the attack surfaces.

Then, we conducted a systematic survey on the existing
works on containers security. In particular, we assessed
the strengths and weaknesses of existing mitigation strategies
against the identified security threats in containers. Based on
our assessment, most of the existing mitigation strategies have
certain limitations and not sufficient to address the security risks
posed to the container systems. Therefore, we have also out-
lined several areas of future research directions to enhance the
security of containers. We hope this paper will help practition-
ers and researchers to be aware of the current threat landscape
and security gaps in containers, and open up areas for further
explorations and studies.

Acknowledgment

We would like to thank our peers and colleagues for their
valuable feedback. Any opinions, conclusions or recommenda-
tions expressed in this paper are those of the authors and do not
necessarily reflect the views of the universities.

References

[1] Google, Containers at google, online (Apr 2021).
URL https://cloud.google.com/containers#:~:text=Containers%
20give%20developers%20the%20ability,runtimes%20and%20other%
20software%20libraries..

[2] C. Hall, Netflix’s container management system is now open source,
online (Apr 2018).
URL https://www.datacenterknowledge.com/cloud/netflixs-container-
management-system-now-open-source

[3] J. Armstrong, The journey to 150,000 containers at paypal, online (Dec
2017).
URL https://m-square.com.au/the-journey-to-150000-containers-at-
paypal/

[4] S. Williams, Gartner: Strong revenue growth forecast for container man-
agement software and services, online (Jun 2020).
URL https://datacenternews.asia/story/gartner-strong-revenue-growth-
forecast-for-container-management-software-and-services

[5] M. Vizard, Sysdig report shines light on container usage patterns, online
(Oct 2019).
URL https://containerjournal.com/topics/container-ecosystems/sysdig-
report-shines-light-on-container-usage-patterns/

[6] H. Barua, Half of 4 million public docker hub images found to have
critical vulnerabilities, online (Dec 2020).
URL https://www.infoq.com/news/2020/12/dockerhub-image-
vulnerabilities/

[7] R. Field, Attackers found building malicious container images directly
on host, online (Sep 2020).
URL https://www.infoq.com/news/2020/09/Malicious-Container-
Images/

[8] C. Cimpanu, A hacking group is hijacking docker systems with exposed
api endpoints, online (Nov 2019).
URL https://www.zdnet.com/article/a-hacking-group-is-hijacking-
docker-systems-with-exposed-api-endpoints/

[9] M. Vizard, Latest docker container attack highlights remote networking
flaws, online (Aug 2020).
URL https://containerjournal.com/topics/container-security/latest-
docker-container-attack-highlights-remote-networking-flaws/

[10] MITRE, Cve, online (Nov 2022).
URL https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=container

[11] T. Seals, Tesla falls to crypto-jackers, online (Feb 2018).
URL https://www.infosecurity-magazine.com/news/tesla-falls-to-
cryptojackers/

[12] S. Nichols, Russia using kubernetes cluster for brute-force attacks,
online (Jul 2021).
URL https://searchsecurity.techtarget.com/news/252503482/Russia-
using-Kubernetes-cluster-for-brute-force-attacks

[13] K. Matthews, Incident of the week: Impact of docker security breach,
online (May 2019).
URL https://www.cshub.com/attacks/articles/incident-of-the-week-
impact-of-docker-security-breach

[14] K. Townsend, Attacks against container infrastructures increasing,
including supply chain attacks, online (Jun 2021).
URL https://www.securityweek.com/attacks-against-container-
infrastructures-increasing-including-supply-chain-attacks

[15] M. Jarvis, Privileged docker containers—do you really need them?, on-
line (Nov 2020).
URL https://snyk.io/blog/privileged-docker-containers/

[16] A. Morag, G. Singer, Threat alert: Market-first container image built to
attack kubernetes clusters, online (Nov 2020).
URL https://blog.aquasec.com/kubernetes-vulnerability-security-threat

[17] A. Remillano, II, Malicious docker hub container images used for
cryptocurrency mining, Trend MicroOnline (Aug 2020).
URL https://www.trendmicro.com/vinfo/us/security/news/
virtualization-and-cloud/malicious-docker-hub-container-images-
cryptocurrency-mining

[18] D. Sagi, Dns spoofing on kubernetes clusters, online (Aug 2019).
URL https://blog.aquasec.com/dns-spoofing-kubernetes-clusters

[19] N. Chako, Attacking kubernetes clusters through your network plumb-
ing: Part 1, online (May 2020).
URL https://www.cyberark.com/resources/threat-research-blog/
attacking-kubernetes-clusters-through-your-network-plumbing-part-1

[20] A. Martin, S. Raponi, T. Combe, R. Pietro, Docker ecosystem – vulner-
ability analysis, Computer Communications 122 (2018) 30–43,.

[21] S. Kerner, Build and ship any application anywhere, online (Apr 2019).
URL https://www.eweek.com/security/docker-hub-breached-
impacting-190-000-accounts/

[22] P. Liu, S. Ji, L. Fu, K. Lu, X. Zhang, W.-H. Lee, T. Lu, W. Chen,
R. Beyah, Understanding the security risks of docker hub, in: European
Symposium on Research in Computer Security – ESORICS 2020, 2020.

[23] Y. Shen, X. Yu, Docker container hardening method based on trusted
computing, Journal of Physics: Conference Series 1619 (2020) 012014.
doi:10.1088/1742-6596/1619/1/012014.
URL https://doi.org/10.1088/1742-6596/1619/1/012014

[24] Y. Luo, W. Luo, X. Sun, Q. Shen, A. Ruan, Z. Wu, Whispers between
the containers: High-capacity covert channel attacks in docker, in: 2016
IEEE Trustcom/BigDataSE/ISPA, 2016, pp. 630–637. doi:10.1109/
TrustCom.2016.0119.

[25] RedLock CSI Team, Lessons from the cryptojacking attack at tesla, on-

19

https://cloud.google.com/containers#:~:text=Containers%20give%20developers%20the%20ability,runtimes%20and%20other%20software%20libraries..
https://cloud.google.com/containers#:~:text=Containers%20give%20developers%20the%20ability,runtimes%20and%20other%20software%20libraries..
https://cloud.google.com/containers#:~:text=Containers%20give%20developers%20the%20ability,runtimes%20and%20other%20software%20libraries..
https://cloud.google.com/containers#:~:text=Containers%20give%20developers%20the%20ability,runtimes%20and%20other%20software%20libraries..
https://www.datacenterknowledge.com/cloud/netflixs-container-management-system-now-open-source
https://www.datacenterknowledge.com/cloud/netflixs-container-management-system-now-open-source
https://www.datacenterknowledge.com/cloud/netflixs-container-management-system-now-open-source
https://m-square.com.au/the-journey-to-150000-containers-at-paypal/
https://m-square.com.au/the-journey-to-150000-containers-at-paypal/
https://m-square.com.au/the-journey-to-150000-containers-at-paypal/
https://datacenternews.asia/story/gartner-strong-revenue-growth-forecast-for-container-management-software-and-services
https://datacenternews.asia/story/gartner-strong-revenue-growth-forecast-for-container-management-software-and-services
https://datacenternews.asia/story/gartner-strong-revenue-growth-forecast-for-container-management-software-and-services
https://datacenternews.asia/story/gartner-strong-revenue-growth-forecast-for-container-management-software-and-services
https://containerjournal.com/topics/container-ecosystems/sysdig-report-shines-light-on-container-usage-patterns/
https://containerjournal.com/topics/container-ecosystems/sysdig-report-shines-light-on-container-usage-patterns/
https://containerjournal.com/topics/container-ecosystems/sysdig-report-shines-light-on-container-usage-patterns/
https://www.infoq.com/news/2020/12/dockerhub-image-vulnerabilities/
https://www.infoq.com/news/2020/12/dockerhub-image-vulnerabilities/
https://www.infoq.com/news/2020/12/dockerhub-image-vulnerabilities/
https://www.infoq.com/news/2020/12/dockerhub-image-vulnerabilities/
https://www.infoq.com/news/2020/09/Malicious-Container-Images/
https://www.infoq.com/news/2020/09/Malicious-Container-Images/
https://www.infoq.com/news/2020/09/Malicious-Container-Images/
https://www.infoq.com/news/2020/09/Malicious-Container-Images/
https://www.zdnet.com/article/a-hacking-group-is-hijacking-docker-systems-with-exposed-api-endpoints/
https://www.zdnet.com/article/a-hacking-group-is-hijacking-docker-systems-with-exposed-api-endpoints/
https://www.zdnet.com/article/a-hacking-group-is-hijacking-docker-systems-with-exposed-api-endpoints/
https://www.zdnet.com/article/a-hacking-group-is-hijacking-docker-systems-with-exposed-api-endpoints/
https://containerjournal.com/topics/container-security/latest-docker-container-attack-highlights-remote-networking-flaws/
https://containerjournal.com/topics/container-security/latest-docker-container-attack-highlights-remote-networking-flaws/
https://containerjournal.com/topics/container-security/latest-docker-container-attack-highlights-remote-networking-flaws/
https://containerjournal.com/topics/container-security/latest-docker-container-attack-highlights-remote-networking-flaws/
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=container
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=container
https://www.infosecurity-magazine.com/news/tesla-falls-to-cryptojackers/
https://www.infosecurity-magazine.com/news/tesla-falls-to-cryptojackers/
https://www.infosecurity-magazine.com/news/tesla-falls-to-cryptojackers/
https://searchsecurity.techtarget.com/news/252503482/Russia-using-Kubernetes-cluster-for-brute-force-attacks
https://searchsecurity.techtarget.com/news/252503482/Russia-using-Kubernetes-cluster-for-brute-force-attacks
https://searchsecurity.techtarget.com/news/252503482/Russia-using-Kubernetes-cluster-for-brute-force-attacks
https://www.cshub.com/attacks/articles/incident-of-the-week-impact-of-docker-security-breach
https://www.cshub.com/attacks/articles/incident-of-the-week-impact-of-docker-security-breach
https://www.cshub.com/attacks/articles/incident-of-the-week-impact-of-docker-security-breach
https://www.securityweek.com/attacks-against-container-infrastructures-increasing-including-supply-chain-attacks
https://www.securityweek.com/attacks-against-container-infrastructures-increasing-including-supply-chain-attacks
https://www.securityweek.com/attacks-against-container-infrastructures-increasing-including-supply-chain-attacks
https://www.securityweek.com/attacks-against-container-infrastructures-increasing-including-supply-chain-attacks
https://snyk.io/blog/privileged-docker-containers/
https://snyk.io/blog/privileged-docker-containers/
https://blog.aquasec.com/kubernetes-vulnerability-security-threat
https://blog.aquasec.com/kubernetes-vulnerability-security-threat
https://blog.aquasec.com/kubernetes-vulnerability-security-threat
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/malicious-docker-hub-container-images-cryptocurrency-mining
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/malicious-docker-hub-container-images-cryptocurrency-mining
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/malicious-docker-hub-container-images-cryptocurrency-mining
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/malicious-docker-hub-container-images-cryptocurrency-mining
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/malicious-docker-hub-container-images-cryptocurrency-mining
https://blog.aquasec.com/dns-spoofing-kubernetes-clusters
https://blog.aquasec.com/dns-spoofing-kubernetes-clusters
https://www.cyberark.com/resources/threat-research-blog/attacking-kubernetes-clusters-through-your-network-plumbing-part-1
https://www.cyberark.com/resources/threat-research-blog/attacking-kubernetes-clusters-through-your-network-plumbing-part-1
https://www.cyberark.com/resources/threat-research-blog/attacking-kubernetes-clusters-through-your-network-plumbing-part-1
https://www.cyberark.com/resources/threat-research-blog/attacking-kubernetes-clusters-through-your-network-plumbing-part-1
https://www.eweek.com/security/docker-hub-breached-impacting-190-000-accounts/
https://www.eweek.com/security/docker-hub-breached-impacting-190-000-accounts/
https://www.eweek.com/security/docker-hub-breached-impacting-190-000-accounts/
https://doi.org/10.1088/1742-6596/1619/1/012014
https://doi.org/10.1088/1742-6596/1619/1/012014
https://doi.org/10.1088/1742-6596/1619/1/012014
https://doi.org/10.1088/1742-6596/1619/1/012014
https://doi.org/10.1109/TrustCom.2016.0119
https://doi.org/10.1109/TrustCom.2016.0119
https://redlock.io/blog/cryptojacking-tesla.


line (Feb 2018).
URL https://redlock.io/blog/cryptojacking-tesla.

[26] X. Gao, Z. Gu, Z. Li, H. Jamjoom, C. Wang, Houdini’s escape: Break-
ing the resource rein of linux control groups, in: 2019 ACM SIGSAC
Conference on Computer and Communications, London, 2019.

[27] V. Pavišić, User privileges in docker containers, online (Apr 2019).
URL https://medium.com/jobteaser-dev-team/docker-user-best-
practices-a8d2ca5205f4

[28] T. Combe, A. Martin, R. Pietro, To docker or not to docker: A security
perspective, IEEE Cloud Computing 3 (5) (2016) 54–62.

[29] A. Duarte, N. Antunes, An empirical study of docker vulnerabilities and
of static code analysis applicability, in: 2018 Eighth Latin-American
Symposium on Dependable Computing (LADC), 2018, pp. 27–36. doi:
10.1109/LADC.2018.00013.

[30] K. Wist, M. Helsem, D. Gligoroski, Vulnerability analysis of 2500
docker hub images, CoRR abs/2006.02932 (2020). arXiv:2006.
02932.
URL https://arxiv.org/abs/2006.02932

[31] O. Flauzac, F. Mauhourat, F. Nolot, A review of native container secu-
rity for running applications, Procedia Computer Science 175 (2020)
157–164, the 17th International Conference on Mobile Systems and
Pervasive Computing (MobiSPC),The 15th International Conference
on Future Networks and Communications (FNC),The 10th Interna-
tional Conference on Sustainable Energy Information Technology.
doi:https://doi.org/10.1016/j.procs.2020.07.025.
URL https://www.sciencedirect.com/science/article/pii/
S187705092031704X

[32] S. Sultan, I. Ahmad, T. Dimitriou, Container security: Issues, chal-
lenges, and the road ahead, IEEE Access 7 (2019) 52976–52996. doi:
10.1109/ACCESS.2019.2911732.

[33] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, Q. Zhou, A measurement study
on linux container security: Attacks and countermeasures, in: Proceed-
ings of the 34th Annual Computer Security Applications Conference,
2018.

[34] J. Burns, Att&ck® for containers now available!, online (Apr 2021).
URL https://medium.com/mitre-engenuity/att-ck-for-containers-now-
available-4c2359654bf1

[35] "MITRE", Containers matrix att&ck, online (Sep 2021).
URL https://attack.mitre.org/matrices/enterprise/containers/

[36] D. Oh, 10 layers of linux container security, online (Oct 2017).
URL https://opensource.com/article/17/10/10-layers-container-
security#:~:text=Containers%20are%20Linux%20processes%20with,
and%20still%20the%20best%20practice..

[37] Red Hat, Linux capabilities and seccomp, online (May 2021).
URL https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux_atomic_host/7/html/container_security_guide/linux_
capabilities_and_seccomp

[38] T. Bui, Analysis of docker security, CoRR abs/1501.02967 (2015).
[39] Docker, Enable two-factor authentication for docker hub, online (Sep

2021).
URL https://docs.docker.com/docker-hub/2fa/#:~:text=To%20enable%
20two-factor%20authentication%2C%20log%20in%20to%20your,
authenticator%20app.%20Click%20Set%20up%20using%20an%
20app.

[40] Docker, Use multi-stage builds, online (Aug 2021).
URL https://docs.docker.com/develop/develop-images/multistage-
build/

[41] A. Iradier, Top 20 dockerfile best practices, online (Mar 2021).
URL https://sysdig.com/blog/dockerfile-best-practices/

[42] Docker, Content trust in docker, online (Jun 2021).
URL https://docs.docker.com/engine/security/trust/

[43] Y. Sun, D. R. Safford, M. Zohar, D. Pendarakis, Z. Gu, T. Jaeger, Secu-
rity namespace: Making linux security frameworks available to contain-
ers, in: USENIX Security Symposium, 2018.

[44] S. Bhat, 5 open source tools for container security, online (Aug 2018).
URL https://opensource.com/article/18/8/tools-container-security

[45] K. Brady, S. Moon, T. Nguyen, J. Coffman, Docker container secu-
rity in cloud computing, in: 2020 10th Annual Computing and Com-
munication Workshop and Conference (CCWC), 2020. doi:10.1109/
ccwc47524.2020.9031195.

[46] M. Souppaya, K. Stine, M. Simos, K. Scarfone, Critical cybersecurity

hygiene: Patching the enterprise, online (Mar 2020).
URL https://www.nccoe.nist.gov/projects/building-blocks/patching-
enterprise

[47] CIS, Cis docker benchmark, online (May 2021).
URL https://www.cisecurity.org/benchmark/docker/

[48] Docker, Run the docker daemon as a non-root user (rootless mode), on-
line (Sep 2021).
URL https://docs.docker.com/engine/security/rootless/

[49] L. Lei, J. Sun, K. Sun, C. Shenefiel, R. Ma, Y. Wang, Q. Li, Speaker:
Split-phase execution of application containers, in: International Con-
ference on Detection of Intrusions and Malware, and Vulnerability As-
sessment, 2017.

[50] N. Stoler, G. Reti, The strange case of how we escaped the docker
default container, online (Mar 2021).
URL https://www.cyberark.com/resources/threat-research-blog/the-
strange-case-of-how-we-escaped-the-docker-default-container

[51] M. Howard, S. Lipner, The Security Development Lifecycle, Microsoft
Press, USA, 2006.

[52] N. Shevchenko, T. Chick, P. O’Riordan, T. Scanlon, C. Woody, Threat
Modeling: A Summary of Available Methods, Carnegie Mellon Univer-
sity, Software Engineering Institute, Pittsburgh, 2018.

[53] R. Scandariato, K. Wuyts, W. Joosen, A descriptive study of microsoft’s
threat modeling technique, Requirements Engineering 20 (2) (2015)
163–180. doi:10.1007/s00766-013-0195-2.

[54] R. Khan, K. McLaughlin, D. Laverty, S. Sezer, Stride-based threat
modeling for cyber-physical systems, in: 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), Turin,
Italy, 2017.

[55] L. Sion, K. Yskout, D. Van Landuyt, W. Joosen, Solution-aware data
flow diagrams for security threat modeling, Proceedings of the 33rd An-
nual ACM Symposium on Applied Computing (2018).

[56] N. Mead, F. Shull, The hybrid threat modeling method, online (Apr
2018).
URL https://resources.sei.cmu.edu/asset_files/TechnicalNote/2018_
004_001_516627.pdf

[57] A. Karahasanovic, P. Kleberger, M. Almgren, Adapting threat model-
ing methods for the automotive industry, Proceedings of Escar Europe
conference | Embedded Security in Cars (2017).

[58] IBM, Docker, online (Jun 2021).
URL https://www.ibm.com/cloud/learn/docker

[59] B. Golden, 3 reasons why you should always run microservices apps in
containers, online (May 2021).
URL https://techbeacon.com/app-dev-testing/3-reasons-why-you-
should-always-run-microservices-apps-containers

[60] G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, Z. Li, Microservices:
architecture, container, and challenges, in: 2020 IEEE 20th Interna-
tional Conference on Software Quality, Reliability and Security Com-
panion (QRS-C), 2020, pp. 629–635. doi:10.1109/QRS-C51114.
2020.00107.

[61] IBMCloud Education, Microservices, online (Mar 2021).
URL https://www.ibm.com/cloud/learn/microservices

[62] X. Lin, P. Zavarsky, R. Ruhl, D. Lindskog, Threat modeling for csrf
attacks, in: International Conference on Computational Science and En-
gineering, 2009.

[63] T. UcedaVelez, M. M. Morana, Risk Centric Threat Modeling: process
for attack simulation and threat analysis, John Wiley & Sons, 2015.

[64] Nick, Pasta threat modeling, online (July 2022).
URL https://threat-modeling.com/pasta-threat-modeling/

[65] Threatmodeler, Threat modeling methodologies: What is vast?, online
(Oct 2018).
URL https://threatmodeler.com/threat-modeling-methodologies-vast/

[66] P. Saitta, B. Larcom, M. Eddington, Trike v.1 methodology document
[draft], White Paper, available at http://www.octotrike.org/ (July 2005).

[67] C. Alberts, A. Dorofee, J. Stevens, C. Woody, Introduction to the octave
approach, online (August 2003).
URL https://resources.sei.cmu.edu/asset_files/UsersGuide/2003_012_
001_51556.pdf

[68] M. Souppaya, K. Scarfone, Guide to data-centric system threat model-
ing, online (March 2016).
URL https://csrc.nist.gov/publications/detail/sp/800-154/draft

[69] H. von Scheel, M. von Rosing, M. Hove, M. Fonseca, U. Foldager,

20

https://redlock.io/blog/cryptojacking-tesla.
https://medium.com/jobteaser-dev-team/docker-user-best-practices-a8d2ca5205f4
https://medium.com/jobteaser-dev-team/docker-user-best-practices-a8d2ca5205f4
https://medium.com/jobteaser-dev-team/docker-user-best-practices-a8d2ca5205f4
https://doi.org/10.1109/LADC.2018.00013
https://doi.org/10.1109/LADC.2018.00013
https://arxiv.org/abs/2006.02932
https://arxiv.org/abs/2006.02932
http://arxiv.org/abs/2006.02932
http://arxiv.org/abs/2006.02932
https://arxiv.org/abs/2006.02932
https://www.sciencedirect.com/science/article/pii/S187705092031704X
https://www.sciencedirect.com/science/article/pii/S187705092031704X
https://doi.org/https://doi.org/10.1016/j.procs.2020.07.025
https://www.sciencedirect.com/science/article/pii/S187705092031704X
https://www.sciencedirect.com/science/article/pii/S187705092031704X
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2019.2911732
https://medium.com/mitre-engenuity/att-ck-for-containers-now-available-4c2359654bf1
https://medium.com/mitre-engenuity/att-ck-for-containers-now-available-4c2359654bf1
https://medium.com/mitre-engenuity/att-ck-for-containers-now-available-4c2359654bf1
https://attack.mitre.org/matrices/enterprise/containers/
https://attack.mitre.org/matrices/enterprise/containers/
https://opensource.com/article/17/10/10-layers-container-security#:~:text=Containers%20are%20Linux%20processes%20with,and%20still%20the%20best%20practice..
https://opensource.com/article/17/10/10-layers-container-security#:~:text=Containers%20are%20Linux%20processes%20with,and%20still%20the%20best%20practice..
https://opensource.com/article/17/10/10-layers-container-security#:~:text=Containers%20are%20Linux%20processes%20with,and%20still%20the%20best%20practice..
https://opensource.com/article/17/10/10-layers-container-security#:~:text=Containers%20are%20Linux%20processes%20with,and%20still%20the%20best%20practice..
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://docs.docker.com/docker-hub/2fa/#:~:text=To%20enable%20two-factor%20authentication%2C%20log%20in%20to%20your,authenticator%20app.%20Click%20Set%20up%20using%20an%20app.
https://docs.docker.com/docker-hub/2fa/#:~:text=To%20enable%20two-factor%20authentication%2C%20log%20in%20to%20your,authenticator%20app.%20Click%20Set%20up%20using%20an%20app.
https://docs.docker.com/docker-hub/2fa/#:~:text=To%20enable%20two-factor%20authentication%2C%20log%20in%20to%20your,authenticator%20app.%20Click%20Set%20up%20using%20an%20app.
https://docs.docker.com/docker-hub/2fa/#:~:text=To%20enable%20two-factor%20authentication%2C%20log%20in%20to%20your,authenticator%20app.%20Click%20Set%20up%20using%20an%20app.
https://docs.docker.com/docker-hub/2fa/#:~:text=To%20enable%20two-factor%20authentication%2C%20log%20in%20to%20your,authenticator%20app.%20Click%20Set%20up%20using%20an%20app.
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/
https://sysdig.com/blog/dockerfile-best-practices/
https://sysdig.com/blog/dockerfile-best-practices/
https://docs.docker.com/engine/security/trust/
https://docs.docker.com/engine/security/trust/
https://opensource.com/article/18/8/tools-container-security
https://opensource.com/article/18/8/tools-container-security
https://doi.org/10.1109/ccwc47524.2020.9031195
https://doi.org/10.1109/ccwc47524.2020.9031195
https://www.nccoe.nist.gov/projects/building-blocks/patching-enterprise
https://www.nccoe.nist.gov/projects/building-blocks/patching-enterprise
https://www.nccoe.nist.gov/projects/building-blocks/patching-enterprise
https://www.nccoe.nist.gov/projects/building-blocks/patching-enterprise
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://docs.docker.com/engine/security/rootless/
https://docs.docker.com/engine/security/rootless/
https://www.cyberark.com/resources/threat-research-blog/the-strange-case-of-how-we-escaped-the-docker-default-container
https://www.cyberark.com/resources/threat-research-blog/the-strange-case-of-how-we-escaped-the-docker-default-container
https://www.cyberark.com/resources/threat-research-blog/the-strange-case-of-how-we-escaped-the-docker-default-container
https://www.cyberark.com/resources/threat-research-blog/the-strange-case-of-how-we-escaped-the-docker-default-container
https://doi.org/10.1007/s00766-013-0195-2
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2018_004_001_516627.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2018_004_001_516627.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2018_004_001_516627.pdf
https://www.ibm.com/cloud/learn/docker
https://www.ibm.com/cloud/learn/docker
https://techbeacon.com/app-dev-testing/3-reasons-why-you-should-always-run-microservices-apps-containers
https://techbeacon.com/app-dev-testing/3-reasons-why-you-should-always-run-microservices-apps-containers
https://techbeacon.com/app-dev-testing/3-reasons-why-you-should-always-run-microservices-apps-containers
https://techbeacon.com/app-dev-testing/3-reasons-why-you-should-always-run-microservices-apps-containers
https://doi.org/10.1109/QRS-C51114.2020.00107
https://doi.org/10.1109/QRS-C51114.2020.00107
https://www.ibm.com/cloud/learn/microservices
https://www.ibm.com/cloud/learn/microservices
https://threat-modeling.com/pasta-threat-modeling/
https://threat-modeling.com/pasta-threat-modeling/
https://threatmodeler.com/threat-modeling-methodologies-vast/
https://threatmodeler.com/threat-modeling-methodologies-vast/
http://www.octotrike.org/
https://resources.sei.cmu.edu/asset_files/UsersGuide/2003_012_001_51556.pdf
https://resources.sei.cmu.edu/asset_files/UsersGuide/2003_012_001_51556.pdf
https://resources.sei.cmu.edu/asset_files/UsersGuide/2003_012_001_51556.pdf
https://resources.sei.cmu.edu/asset_files/UsersGuide/2003_012_001_51556.pdf
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://csrc.nist.gov/publications/detail/sp/800-154/draft


Phase 2: Process concept evolution, in: M. von Rosing, A.-W.
Scheer, H. von Scheel (Eds.), The Complete Business Process Hand-
book, Morgan Kaufmann, Boston, 2015, pp. 11–35. doi:https:
//doi.org/10.1016/B978-0-12-799959-3.00002-1.
URL https://www.sciencedirect.com/science/article/pii/
B9780127999593000021

[70] S. Hernan, S. Lambert, T. Ostwald, A. Shostack, Threat model-
ing:uncover security design flaws using the stride approach, online (July
2019).
URL https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/
november/uncover-security-design-flaws-using-the-stride-approach

[71] W. Gamage, Common container security threats, online (Nov 2019).
URL https://www.wwt.com/article/common-container-security-threats

[72] C. Cimpanu, 17 backdoored docker images removed from docker hub,
online (Jun 2018).
URL https://www.bleepingcomputer.com/news/security/17-
backdoored-docker-images-removed-from-docker-hub/

[73] A. Grattafiori, Understanding and hardening linux containers, online
(June 2016).
URL https://research.nccgroup.com/wp-content/uploads/2020/07/ncc_
group_understanding_hardening_linux_containers-1-1.pdf

[74] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, H. C. Gall,
An empirical analysis of the docker container ecosystem on github, in:
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), 2017, pp. 323–333. doi:10.1109/MSR.2017.
67.

[75] Docker, Docker id accounts, online (Sep 2021).
URL https://docs.docker.com/docker-id/

[76] G. Docs", Creating a strong password, online (Jul 2021).
URL https://docs.github.com/en/github/authenticating-to-github/
keeping-your-account-and-data-secure/creating-a-strong-password

[77] SailPoint, 8 types of password attacks, online (Feb 2021).
URL https://www.sailpoint.com/identity-library/8-types-of-password-
attacks/

[78] Docker, Repositories, online (Sep 2021).
URL https://docs.docker.com/docker-hub/repos/

[79] M. Sequeira, Low-hanging secrets in docker hub and a tool to catch
them all, online (Nov 2020).
URL https://ioactive.com/guest-blog-docker-hub-scanner-matias-
sequeira/

[80] docker, Docker official images impacted by log4j 2 cve, online (May
2022).
URL https://docs.docker.com/security/

[81] Docker, Docker registry http api v2, online (Jul 2021).
URL https://docs.docker.com/registry/spec/api/

[82] CVE, Vulnerability details : Cve-2017-18641, online (Feb 2020).
URL https://www.cvedetails.com/cve/CVE-2017-18641/

[83] Docker, Docker security, online (Sep 2021).
URL https://docs.docker.com/engine/security/

[84] Docker, Best practices for using docker hub for ci/cd, online (Aug 2021).
URL https://docs.docker.com/ci-cd/best-practices/

[85] sematext, Docker logging: A complete guide, online (Jul 2021).
URL https://sematext.com/guides/docker-logs/

[86] Docker, Configure logging drivers, online (Jul 2021).
URL https://docs.docker.com/config/containers/logging/configure/

[87] J. Chelladhurai, P. R. Chelliah, S. A. Kumar, Securing docker con-
tainers from denial of service (dos) attacks, in: 2016 IEEE Interna-
tional Conference on Services Computing (SCC), 2016, pp. 856–859.
doi:10.1109/SCC.2016.123.

[88] Red Hat, runc - malicious container escape - cve-2019-5736, online (Apr
2020).
URL https://access.redhat.com/security/vulnerabilities/runcescape

[89] CVE Details, Linux kernel: Vulnerability statistics, online (Aug 2021).
URL https://www.cvedetails.com/product/47/Linux-Linux-
Kernel.html?vendorid=33

[90] Z. Jian, L. Chen, A defense method against docker escape attack, in:
Proceedings of the 2017 International Conference on Cryptography, Se-
curity and Privacy, ICCSP ’17, Association for Computing Machinery,
New York, NY, USA, 2017, p. 142–146. doi:10.1145/3058060.
3058085.
URL https://doi.org/10.1145/3058060.3058085

[91] R. Shirey, Internet security glossary, online. IETF Request for comments
4949 (Aug 2007).
URL https://datatracker.ietf.org/doc/html/rfc4949

[92] J. Sirkin, Github repositories leak thousands of secrets, study shows,
online (Nov 2019).
URL https://www.cyberark.com/resources/blog/github-repositories-
leak-thousands-of-secrets-study-shows

[93] R. A. Sandvik, Attackers scrape github for cloud service credentials,
hijack account to mine virtual currency, online (Jan 2014).
URL https://www.forbes.com/sites/runasandvik/2014/01/14/attackers-
scrape-github-for-cloud-service-credentials-hijack-account-to-mine-
virtual-currency/?sh=5ee6e5f83196

[94] P. Ramesh, D. Bhaskari, Ch.Satyanarayana, A comprehensive analysis
of spoofing, International Journal of Advanced Computer Science and
Applications 1 (6) (2010). doi:10.14569/ijacsa.2010.010623.

[95] T. H. Kim, D. Reeves, A survey of domain name system vulnerabilities
and attacks, Journal of Surveillance, Security and Safety (2020). doi:
10.20517/jsss.2020.14.

[96] Red Hat, Kubernetes adoption, security, and market trends report 2021,
online (Jul 2021).
URL https://www.redhat.com/en/resources/kubernetes-adoption-
security-market-trends-2021-overview

[97] S. Garg, S. Garg, Automated cloud infrastructure, continuous integration
and continuous delivery using docker with robust container security, in:
2019 IEEE Conference on Multimedia Information Processing and Re-
trieval (MIPR), 2019, pp. 467–470. doi:10.1109/MIPR.2019.00094.

[98] F. Massacci, T. Jaeger, S. Peisert, Solarwinds and the challenges of
patching: Can we ever stop dancing with the devil?, IEEE Security Pri-
vacy 19 (2) (2021) 14–19. doi:10.1109/MSEC.2021.3050433.

[99] C. for Internet Security, The solarwinds cyber-attack: What you need to
know, online (Mar 2021).
URL https://www.cisecurity.org/solarwinds

[100] R. Shu, X. Gu, W. Enck, A study of security vulnerabilities on docker
hub, in: Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, CODASPY ’17, Association for Com-
puting Machinery, New York, NY, USA, 2017, p. 269–280. doi:
10.1145/3029806.3029832.
URL https://doi.org/10.1145/3029806.3029832

[101] F. Y. Rashid, Most applications contain vulnerable open source libraries,
online (May 2020).
URL https://duo.com/decipher/most-applications-contain-vulnerable-
open-source-libraries

[102] L. Tal, 88% increase in application library vulnerabilities over two
years, online (Feb 2019).
URL https://snyk.io/blog/88-increase-in-application-library-
vulnerabilities-over-two-years/

[103] J. Greig, 96% of third-party container applications deployed in cloud
infrastructure contain known vulnerabilities: Unit 42, online (Sep
2021).
URL https://www.zdnet.com/article/96-of-third-party-container-
applications-deployed-in-cloud-infrastructure-contain-known-
vulnerabilities-unit-42/

[104] D. Everson, L. Cheng, Z. Zhang, Log4shell: Redefining the web attack
surface, NDSS Symposium - Workshop on Measurements, Attacks, and
Defenses for the Web (MADWeb) (2022).
URL https://dx.doi.org/10.14722/madweb.2022.23010

[105] G. Belding, Ethical hacking: Log tampering 101, online (Sep 2019).
URL https://resources.infosecinstitute.com/topic/ethical-hacking-log-
tampering-101/

[106] A. Rahic, Where are docker container logs stored?, online (Apr 2020).
URL https://sematext.com/blog/docker-logs-location/

[107] D. Fiser, A. Oliveira, Why a privileged container in docker is a bad idea,
online (Dec 2019).
URL https://www.trendmicro.com/en_sg/research/19/l/why-running-a-
privileged-container-in-docker-is-a-bad-idea.html

[108] I. Ilascu, Starbucks devs leave api key in github public repo, online (Dec
2019).
URL https://www.bleepingcomputer.com/news/security/starbucks-
devs-leave-api-key-in-github-public-repo/

[109] A. Joshi, Circleci reports of a security breach and malicious database in
a third-party vendor account, online (Sep 2019).

21

https://www.sciencedirect.com/science/article/pii/B9780127999593000021
https://doi.org/https://doi.org/10.1016/B978-0-12-799959-3.00002-1
https://doi.org/https://doi.org/10.1016/B978-0-12-799959-3.00002-1
https://www.sciencedirect.com/science/article/pii/B9780127999593000021
https://www.sciencedirect.com/science/article/pii/B9780127999593000021
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://www.wwt.com/article/common-container-security-threats
https://www.wwt.com/article/common-container-security-threats
https://www.bleepingcomputer.com/news/security/17-backdoored-docker-images-removed-from-docker-hub/
https://www.bleepingcomputer.com/news/security/17-backdoored-docker-images-removed-from-docker-hub/
https://www.bleepingcomputer.com/news/security/17-backdoored-docker-images-removed-from-docker-hub/
https://research.nccgroup.com/wp-content/uploads/2020/07/ncc_group_understanding_hardening_linux_containers-1-1.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/ncc_group_understanding_hardening_linux_containers-1-1.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/ncc_group_understanding_hardening_linux_containers-1-1.pdf
https://doi.org/10.1109/MSR.2017.67
https://doi.org/10.1109/MSR.2017.67
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-strong-password
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-strong-password
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-strong-password
https://www.sailpoint.com/identity-library/8-types-of-password-attacks/
https://www.sailpoint.com/identity-library/8-types-of-password-attacks/
https://www.sailpoint.com/identity-library/8-types-of-password-attacks/
https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/docker-hub/repos/
https://ioactive.com/guest-blog-docker-hub-scanner-matias-sequeira/
https://ioactive.com/guest-blog-docker-hub-scanner-matias-sequeira/
https://ioactive.com/guest-blog-docker-hub-scanner-matias-sequeira/
https://ioactive.com/guest-blog-docker-hub-scanner-matias-sequeira/
https://docs.docker.com/security/
https://docs.docker.com/security/
https://docs.docker.com/registry/spec/api/
https://docs.docker.com/registry/spec/api/
https://www.cvedetails.com/cve/CVE-2017-18641/
https://www.cvedetails.com/cve/CVE-2017-18641/
https://docs.docker.com/engine/security/
https://docs.docker.com/engine/security/
https://docs.docker.com/ci-cd/best-practices/
https://docs.docker.com/ci-cd/best-practices/
https://sematext.com/guides/docker-logs/
https://sematext.com/guides/docker-logs/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://doi.org/10.1109/SCC.2016.123
https://access.redhat.com/security/vulnerabilities/runcescape
https://access.redhat.com/security/vulnerabilities/runcescape
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendorid=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendorid=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendorid=33
https://doi.org/10.1145/3058060.3058085
https://doi.org/10.1145/3058060.3058085
https://doi.org/10.1145/3058060.3058085
https://doi.org/10.1145/3058060.3058085
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://www.cyberark.com/resources/blog/github-repositories-leak-thousands-of-secrets-study-shows
https://www.cyberark.com/resources/blog/github-repositories-leak-thousands-of-secrets-study-shows
https://www.cyberark.com/resources/blog/github-repositories-leak-thousands-of-secrets-study-shows
https://www.forbes.com/sites/runasandvik/2014/01/14/attackers-scrape-github-for-cloud-service-credentials-hijack-account-to-mine-virtual-currency/?sh=5ee6e5f83196
https://www.forbes.com/sites/runasandvik/2014/01/14/attackers-scrape-github-for-cloud-service-credentials-hijack-account-to-mine-virtual-currency/?sh=5ee6e5f83196
https://www.forbes.com/sites/runasandvik/2014/01/14/attackers-scrape-github-for-cloud-service-credentials-hijack-account-to-mine-virtual-currency/?sh=5ee6e5f83196
https://www.forbes.com/sites/runasandvik/2014/01/14/attackers-scrape-github-for-cloud-service-credentials-hijack-account-to-mine-virtual-currency/?sh=5ee6e5f83196
https://www.forbes.com/sites/runasandvik/2014/01/14/attackers-scrape-github-for-cloud-service-credentials-hijack-account-to-mine-virtual-currency/?sh=5ee6e5f83196
https://doi.org/10.14569/ijacsa.2010.010623
https://doi.org/10.20517/jsss.2020.14
https://doi.org/10.20517/jsss.2020.14
https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-2021-overview
https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-2021-overview
https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-2021-overview
https://doi.org/10.1109/MIPR.2019.00094
https://doi.org/10.1109/MSEC.2021.3050433
https://www.cisecurity.org/solarwinds
https://www.cisecurity.org/solarwinds
https://www.cisecurity.org/solarwinds
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.1145/3029806.3029832
https://duo.com/decipher/most-applications-contain-vulnerable-open-source-libraries
https://duo.com/decipher/most-applications-contain-vulnerable-open-source-libraries
https://duo.com/decipher/most-applications-contain-vulnerable-open-source-libraries
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://dx.doi.org/10.14722/madweb.2022.23010
https://dx.doi.org/10.14722/madweb.2022.23010
https://dx.doi.org/10.14722/madweb.2022.23010
https://resources.infosecinstitute.com/topic/ethical-hacking-log-tampering-101/
https://resources.infosecinstitute.com/topic/ethical-hacking-log-tampering-101/
https://resources.infosecinstitute.com/topic/ethical-hacking-log-tampering-101/
https://sematext.com/blog/docker-logs-location/
https://sematext.com/blog/docker-logs-location/
https://www.trendmicro.com/en_sg/research/19/l/why-running-a-privileged-container-in-docker-is-a-bad-idea.html
https://www.trendmicro.com/en_sg/research/19/l/why-running-a-privileged-container-in-docker-is-a-bad-idea.html
https://www.trendmicro.com/en_sg/research/19/l/why-running-a-privileged-container-in-docker-is-a-bad-idea.html
https://www.bleepingcomputer.com/news/security/starbucks-devs-leave-api-key-in-github-public-repo/
https://www.bleepingcomputer.com/news/security/starbucks-devs-leave-api-key-in-github-public-repo/
https://www.bleepingcomputer.com/news/security/starbucks-devs-leave-api-key-in-github-public-repo/
https://hub.packtpub.com/circleci-reports-of-a-security-breach-and-malicious-database-in-a-third-party-vendor-account/
https://hub.packtpub.com/circleci-reports-of-a-security-breach-and-malicious-database-in-a-third-party-vendor-account/


URL https://hub.packtpub.com/circleci-reports-of-a-security-breach-
and-malicious-database-in-a-third-party-vendor-account/

[110] C. Cimpanu, A hacker is wiping git repositories and asking for a
ransom, online (May 2019).
URL https://www.zdnet.com/article/a-hacker-is-wiping-git-
repositories-and-asking-for-a-ransom/

[111] Cimpanu, Catalin, Personal data of 16 million brazilian covid-19
patients exposed online, online (Nov 2020).
URL https://www.zdnet.com/article/personal-data-of-16-million-
brazilian-covid-19-patients-exposed-online/

[112] C. Cimpanu, Nissan source code leaked online after git repo misconfig-
uration, online (Jan 2021).
URL https://www.zdnet.com/article/nissan-source-code-leaked-online-
after-git-repo-misconfiguration/

[113] Cimpanu, Catalin, Mercedes-benz onboard logic unit (olu) source code
leaks online, online (May 2020).
URL https://www.zdnet.com/article/mercedes-benz-onboard-logic-
unit-olu-source-code-leaks-online/

[114] S. Breach, Solarwinds leaked ftp credentials through a public github
repo "mib-importer" since 2018, online (Dec 2020).
URL https://savebreach.com/solarwinds-exposed-ftp-credentials-back-
in-2018-says-security-researcher-vinoth/

[115] Docker, Docker run reference, online (Jul 2021).
URL https://docs.docker.com/engine/reference/run/

[116] Z. Anwar, A. W. Malik, Can a ddos attack meltdown my data center? a
simulation study and defense strategies, IEEE Communications Letters
18 (7) (2014) 1175–1178. doi:10.1109/LCOMM.2014.2328587.

[117] L. Tung, Google: This is what caused cpu throttling at our cloud data
center, online (Mar 2020).
URL https://www.zdnet.com/article/google-this-is-what-caused-cpu-
throttling-at-our-cloud-data-center/

[118] Tung, Liam, Microsoft: Here’s what caused our azure cloud-computing
outage, online (Apr 2021).
URL https://www.zdnet.com/article/microsoft-heres-what-caused-our-
recent-azure-cloud-computing-services-outage/

[119] L. Tung, Amazon: Here’s what caused the major aws outage last week,
online (Nov 2020).
URL https://www.zdnet.com/article/amazon-heres-what-caused-major-
aws-outage-last-week-apologies/

[120] Docker, Runtime options with memory, cpus, and gpus, online (Aug
2021).
URL https://docs.docker.com/config/containers/resource_constraints/

[121] D. Bovet, C. Marco, Understanding the Linux Kernel, O’Reilly Media
Inc, 2007.

[122] R. Gheorghe, Tutorial: Logging with journald, online (Apr 2020).
URL https://sematext.com/blog/journald-logging-tutorial/

[123] J. Haas, A step-by-step guide to using the linux ’sync’ command, online
(Sep 2020).
URL https://www.lifewire.com/sync-linux-command-4091818

[124] L. Rice, Boosting container security with rootless containers, online (Jan
2021).
URL https://blog.aquasec.com/rootless-containers-boosting-container-
security

[125] Docker, Use bridge networks, online (Apr 2021).
URL https://docs.docker.com/network/bridge/#differences-between-
user-defined-bridges-and-the-default-bridge

[126] S. Shevchenko, Kinsing punk: An epic escape from docker containers,
online (Aug 2020).
URL https://www.prevasio.io/blog/kinsing-punk-an-epic-escape-from-
docker-containers

[127] D. Fisher, Docker bug allows root access to host file system, online (May
2019).
URL https://duo.com/decipher/docker-bug-allows-root-access-to-host-
file-system

[128] S. Nahari, Best defense? our red team lead reveals 4 mfa bypass
techniques, online (Jun 2021).
URL https://www.cyberark.com/resources/threat-research-blog/mfa-
bypass-techniques-from-red-team-research

[129] Github Docs, Two-factor authentication, online. Accessed on 26 Jun
2021.
URL https://docs.gitlab.com/ee/user/profile/account/two_factor_

authentication.html
[130] Microsoft 365, Password policy recommendations, online (Jul 2021).

URL https://docs.microsoft.com/en-us/microsoft-365/admin/misc/
password-policy-recommendations?view=o365-worldwide

[131] Z. Doffman, Why you should stop using sms security codes—even on
apple imessage, online (Oct 2020).
URL https://www.forbes.com/sites/zakdoffman/2020/10/11/apple-
iphone-imessage-and-android-messages-sms-passcode-security-
update/?sh=203086bc2ede

[132] C. Cimpanu, Android malware can steal google authenticator 2fa codes,
online (Feb 2020).
URL https://www.zdnet.com/article/android-malware-can-steal-
google-authenticator-2fa-codes/

[133] Github, Notary, online (Jul 2021).
URL https://github.com/theupdateframework/notary

[134] Docker, Pricing & subscriptions, online (Jun 2021).
URL https://www.docker.com/pricing?utm_source=docker&utm_
medium=webreferral&utm_campaign=docs_driven_upgrade

[135] G. Docs", About code scanning with codeql, online (Sep 2021).
URL https://docs.github.com/en/code-security/code-scanning/
automatically-scanning-your-code-for-vulnerabilities-and-
errors/about-code-scanning-with-codeql

[136] J. Palafox, Announcing third-party code scanning tools: static analysis
& developer security training, online (Oct 2020).
URL https://github.blog/2020-10-05-announcing-third-party-code-
scanning-tools-static-analysis-and-developer-security-training/

[137] DRD, Crack ssh private key passwords with john the ripper, online (Jul
2020).
URL https://null-byte.wonderhowto.com/how-to/crack-ssh-private-
key-passwords-with-john-ripper-0302810/

[138] AppViewX, All you need to know about securing your private keys, on-
line (Sep 2019).
URL https://www.appviewx.com/eguide/all-you-need-to-know-about-
securing-your-private-keys/

[139] D. Goodwin, Hackers steal secret crypto keys for nordvpn. here’s what
we know so far, online (Oct 2019).
URL https://arstechnica.com/information-technology/2019/10/hackers-
steal-secret-crypto-keys-for-nordvpn-heres-what-we-know-so-far/

[140] O. Javed, S. Toor, Understanding the quality of container security vul-
nerability detection tools, arXiv:2101.03844v1, (2021).

[141] G. Avner, Docker image security scanning: What it can and can’t do,
online (Apr 2021).
URL https://www.whitesourcesoftware.com/resources/blog/docker-
image-security-scanning/

[142] F. Araujo, T. Taylor, Improving cybersecurity hygiene through jit patch-
ing, in: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2020, Association for Comput-
ing Machinery, New York, NY, USA, 2020, p. 1421–1432. doi:
10.1145/3368089.3417056.
URL https://doi.org/10.1145/3368089.3417056

[143] O. Tunde-Onadele, Y. Lin, J. He, X. Gu, Self-patch: Beyond patch tues-
day for containerized applications, in: 2020 IEEE International Confer-
ence on Autonomic Computing and Self-Organizing Systems (ACSOS),
2020, pp. 21–27. doi:10.1109/ACSOS49614.2020.00022.

[144] R. C. Godoy, Why non-root containers are important for security, online
(Nov 2018).
URL https://engineering.bitnami.com/articles/why-non-root-
containers-are-important-for-security.html

[145] D. Walsh, Running rootless podman as a non-root user, online (Oct
2019).
URL https://www.redhat.com/sysadmin/rootless-podman-makes-sense

[146] S. McCarty, Understanding root inside and outside a container, online
(Dec 2019).
URL https://www.redhat.com/en/blog/understanding-root-inside-and-
outside-container

[147] G. Provelengios, A. Pouraghily, R. Tessier, T. Wolf, A hardware monitor
to protect linux system calls, in: 2018 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2018, pp. 551–556. doi:10.1109/
ISVLSI.2018.00106.

[148] Y. Lin, O. Tunde-Onadele, X. Gu, Cdl: Classified distributed learning

22

https://hub.packtpub.com/circleci-reports-of-a-security-breach-and-malicious-database-in-a-third-party-vendor-account/
https://hub.packtpub.com/circleci-reports-of-a-security-breach-and-malicious-database-in-a-third-party-vendor-account/
https://www.zdnet.com/article/a-hacker-is-wiping-git-repositories-and-asking-for-a-ransom/
https://www.zdnet.com/article/a-hacker-is-wiping-git-repositories-and-asking-for-a-ransom/
https://www.zdnet.com/article/a-hacker-is-wiping-git-repositories-and-asking-for-a-ransom/
https://www.zdnet.com/article/a-hacker-is-wiping-git-repositories-and-asking-for-a-ransom/
https://www.zdnet.com/article/personal-data-of-16-million-brazilian-covid-19-patients-exposed-online/
https://www.zdnet.com/article/personal-data-of-16-million-brazilian-covid-19-patients-exposed-online/
https://www.zdnet.com/article/personal-data-of-16-million-brazilian-covid-19-patients-exposed-online/
https://www.zdnet.com/article/personal-data-of-16-million-brazilian-covid-19-patients-exposed-online/
https://www.zdnet.com/article/nissan-source-code-leaked-online-after-git-repo-misconfiguration/
https://www.zdnet.com/article/nissan-source-code-leaked-online-after-git-repo-misconfiguration/
https://www.zdnet.com/article/nissan-source-code-leaked-online-after-git-repo-misconfiguration/
https://www.zdnet.com/article/nissan-source-code-leaked-online-after-git-repo-misconfiguration/
https://www.zdnet.com/article/mercedes-benz-onboard-logic-unit-olu-source-code-leaks-online/
https://www.zdnet.com/article/mercedes-benz-onboard-logic-unit-olu-source-code-leaks-online/
https://www.zdnet.com/article/mercedes-benz-onboard-logic-unit-olu-source-code-leaks-online/
https://www.zdnet.com/article/mercedes-benz-onboard-logic-unit-olu-source-code-leaks-online/
https://savebreach.com/solarwinds-exposed-ftp-credentials-back-in-2018-says-security-researcher-vinoth/
https://savebreach.com/solarwinds-exposed-ftp-credentials-back-in-2018-says-security-researcher-vinoth/
https://savebreach.com/solarwinds-exposed-ftp-credentials-back-in-2018-says-security-researcher-vinoth/
https://savebreach.com/solarwinds-exposed-ftp-credentials-back-in-2018-says-security-researcher-vinoth/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://doi.org/10.1109/LCOMM.2014.2328587
https://www.zdnet.com/article/google-this-is-what-caused-cpu-throttling-at-our-cloud-data-center/
https://www.zdnet.com/article/google-this-is-what-caused-cpu-throttling-at-our-cloud-data-center/
https://www.zdnet.com/article/google-this-is-what-caused-cpu-throttling-at-our-cloud-data-center/
https://www.zdnet.com/article/google-this-is-what-caused-cpu-throttling-at-our-cloud-data-center/
https://www.zdnet.com/article/microsoft-heres-what-caused-our-recent-azure-cloud-computing-services-outage/
https://www.zdnet.com/article/microsoft-heres-what-caused-our-recent-azure-cloud-computing-services-outage/
https://www.zdnet.com/article/microsoft-heres-what-caused-our-recent-azure-cloud-computing-services-outage/
https://www.zdnet.com/article/microsoft-heres-what-caused-our-recent-azure-cloud-computing-services-outage/
https://www.zdnet.com/article/amazon-heres-what-caused-major-aws-outage-last-week-apologies/
https://www.zdnet.com/article/amazon-heres-what-caused-major-aws-outage-last-week-apologies/
https://www.zdnet.com/article/amazon-heres-what-caused-major-aws-outage-last-week-apologies/
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
https://sematext.com/blog/journald-logging-tutorial/
https://sematext.com/blog/journald-logging-tutorial/
https://www.lifewire.com/sync-linux-command-4091818
https://www.lifewire.com/sync-linux-command-4091818
https://blog.aquasec.com/rootless-containers-boosting-container-security
https://blog.aquasec.com/rootless-containers-boosting-container-security
https://blog.aquasec.com/rootless-containers-boosting-container-security
https://docs.docker.com/network/bridge/#differences-between-user-defined-bridges-and-the-default-bridge
https://docs.docker.com/network/bridge/#differences-between-user-defined-bridges-and-the-default-bridge
https://docs.docker.com/network/bridge/#differences-between-user-defined-bridges-and-the-default-bridge
https://www.prevasio.io/blog/kinsing-punk-an-epic-escape-from-docker-containers
https://www.prevasio.io/blog/kinsing-punk-an-epic-escape-from-docker-containers
https://www.prevasio.io/blog/kinsing-punk-an-epic-escape-from-docker-containers
https://duo.com/decipher/docker-bug-allows-root-access-to-host-file-system
https://duo.com/decipher/docker-bug-allows-root-access-to-host-file-system
https://duo.com/decipher/docker-bug-allows-root-access-to-host-file-system
https://www.cyberark.com/resources/threat-research-blog/mfa-bypass-techniques-from-red-team-research
https://www.cyberark.com/resources/threat-research-blog/mfa-bypass-techniques-from-red-team-research
https://www.cyberark.com/resources/threat-research-blog/mfa-bypass-techniques-from-red-team-research
https://www.cyberark.com/resources/threat-research-blog/mfa-bypass-techniques-from-red-team-research
https://docs.gitlab.com/ee/user/profile/account/two_factor_authentication.html
https://docs.gitlab.com/ee/user/profile/account/two_factor_authentication.html
https://docs.gitlab.com/ee/user/profile/account/two_factor_authentication.html
https://docs.microsoft.com/en-us/microsoft-365/admin/misc/password-policy-recommendations?view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/admin/misc/password-policy-recommendations?view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/admin/misc/password-policy-recommendations?view=o365-worldwide
https://www.forbes.com/sites/zakdoffman/2020/10/11/apple-iphone-imessage-and-android-messages-sms-passcode-security-update/?sh=203086bc2ede
https://www.forbes.com/sites/zakdoffman/2020/10/11/apple-iphone-imessage-and-android-messages-sms-passcode-security-update/?sh=203086bc2ede
https://www.forbes.com/sites/zakdoffman/2020/10/11/apple-iphone-imessage-and-android-messages-sms-passcode-security-update/?sh=203086bc2ede
https://www.forbes.com/sites/zakdoffman/2020/10/11/apple-iphone-imessage-and-android-messages-sms-passcode-security-update/?sh=203086bc2ede
https://www.forbes.com/sites/zakdoffman/2020/10/11/apple-iphone-imessage-and-android-messages-sms-passcode-security-update/?sh=203086bc2ede
https://www.zdnet.com/article/android-malware-can-steal-google-authenticator-2fa-codes/
https://www.zdnet.com/article/android-malware-can-steal-google-authenticator-2fa-codes/
https://www.zdnet.com/article/android-malware-can-steal-google-authenticator-2fa-codes/
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://www.docker.com/pricing?utm_source=docker&utm_medium=webreferral&utm_campaign=docs_driven_upgrade
https://www.docker.com/pricing?utm_source=docker&utm_medium=webreferral&utm_campaign=docs_driven_upgrade
https://www.docker.com/pricing?utm_source=docker&utm_medium=webreferral&utm_campaign=docs_driven_upgrade
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
https://github.blog/2020-10-05-announcing-third-party-code-scanning-tools-static-analysis-and-developer-security-training/
https://github.blog/2020-10-05-announcing-third-party-code-scanning-tools-static-analysis-and-developer-security-training/
https://github.blog/2020-10-05-announcing-third-party-code-scanning-tools-static-analysis-and-developer-security-training/
https://github.blog/2020-10-05-announcing-third-party-code-scanning-tools-static-analysis-and-developer-security-training/
https://null-byte.wonderhowto.com/how-to/crack-ssh-private-key-passwords-with-john-ripper-0302810/
https://null-byte.wonderhowto.com/how-to/crack-ssh-private-key-passwords-with-john-ripper-0302810/
https://null-byte.wonderhowto.com/how-to/crack-ssh-private-key-passwords-with-john-ripper-0302810/
https://www.appviewx.com/eguide/all-you-need-to-know-about-securing-your-private-keys/
https://www.appviewx.com/eguide/all-you-need-to-know-about-securing-your-private-keys/
https://www.appviewx.com/eguide/all-you-need-to-know-about-securing-your-private-keys/
https://arstechnica.com/information-technology/2019/10/hackers-steal-secret-crypto-keys-for-nordvpn-heres-what-we-know-so-far/
https://arstechnica.com/information-technology/2019/10/hackers-steal-secret-crypto-keys-for-nordvpn-heres-what-we-know-so-far/
https://arstechnica.com/information-technology/2019/10/hackers-steal-secret-crypto-keys-for-nordvpn-heres-what-we-know-so-far/
https://arstechnica.com/information-technology/2019/10/hackers-steal-secret-crypto-keys-for-nordvpn-heres-what-we-know-so-far/
https://www.whitesourcesoftware.com/resources/blog/docker-image-security-scanning/
https://www.whitesourcesoftware.com/resources/blog/docker-image-security-scanning/
https://www.whitesourcesoftware.com/resources/blog/docker-image-security-scanning/
https://doi.org/10.1145/3368089.3417056
https://doi.org/10.1145/3368089.3417056
https://doi.org/10.1145/3368089.3417056
https://doi.org/10.1145/3368089.3417056
https://doi.org/10.1145/3368089.3417056
https://doi.org/10.1109/ACSOS49614.2020.00022
https://engineering.bitnami.com/articles/why-non-root-containers-are-important-for-security.html
https://engineering.bitnami.com/articles/why-non-root-containers-are-important-for-security.html
https://engineering.bitnami.com/articles/why-non-root-containers-are-important-for-security.html
https://www.redhat.com/sysadmin/rootless-podman-makes-sense
https://www.redhat.com/sysadmin/rootless-podman-makes-sense
https://www.redhat.com/en/blog/understanding-root-inside-and-outside-container
https://www.redhat.com/en/blog/understanding-root-inside-and-outside-container
https://www.redhat.com/en/blog/understanding-root-inside-and-outside-container
https://doi.org/10.1109/ISVLSI.2018.00106
https://doi.org/10.1109/ISVLSI.2018.00106


for detecting security attacks in containerized applications, in: ACSAC
’20: Annual Computer Security Applications Conference, Austin, 2020.

[149] A. Abed, T. Clancy, D. Levy, Applying bag of system calls for anoma-
lous behavior detection of applications in linux containers, in: 2015
IEEE Globecom Workshops, San Diego, CA, USA, 2015.

[150] D.-K. Kang, D. Fuller, V. Honavar, Learning classifiers for misuse detec-
tion using a bag of system calls representation, Intelligence and Security
Informatics 3495 (2005) 511–516,.

[151] V. Rastogi, D. Davidson, L. De Carli, S. Jha, P. McDaniel, Cimpli-
fier: Automatically debloating containers, in: Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Association for Computing Machinery, New York, NY, USA,
2017, p. 476–486. doi:10.1145/3106237.3106271.
URL https://doi.org/10.1145/3106237.3106271

[152] OWASP, Docker security cheat sheet, online (Aug 2021).
URL https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_
Cheat_Sheet.html

[153] J. Chen, Z. Feng, J. Wen, B. Liu, L. Sha, A container-based dos
attack-resilient control framework for real-time UAV systems, CoRR
abs/1812.02834 (2018). arXiv:1812.02834.
URL http://arxiv.org/abs/1812.02834

[154] R. H. Bugzilla", Bug 1868453 (cve-2020-14356) - cve-2020-14356 ker-
nel: Use after free vulnerability in cgroup bpf component, online (Jun
2021).
URL https://bugzilla.redhat.com/show_bug.cgi?id=1868453

[155] J. Chen, Making containers more isolated: An overview of sandboxed
container technologies, online (Jun 2019).
URL https://unit42.paloaltonetworks.com/making-containers-more-
isolated-an-overview-of-sandboxed-container-technologies/

[156] J. Wallen, How to install and use git-secret, online (Jan 2020).
URL https://www.techrepublic.com/article/how-to-install-and-use-git-
secret/

[157] Docker, Docker login, online (Jul 2021).
URL https://docs.docker.com/engine/reference/commandline/login/

[158] G. Docs", Ignoring files, online (Jul 2021).
URL https://docs.github.com/en/get-started/getting-started-with-
git/ignoring-files

[159] G. Kuizinas, .gitignore mistake that everyone makes, online (Sep 2020).
URL https://dev.to/gajus/gitignore-mistake-that-everyone-makes-44kb

[160] Y. B. Naim, Cyberark labs research: Stealing service credentials to
achieve full domain compromise, online (Nov 2016).
URL https://www.cyberark.com/resources/blog/cyberark-labs-
research-stealing-service-credentials-to-achieve-full-domain-
compromise

[161] M. . ATT&CK", Os credential dumping, online (Sep 2021).
URL https://attack.mitre.org/techniques/T1003/

[162] Kaspersky, What is dns cache poisoning and dns spoofing?, online (Aug
2021).
URL https://www.kaspersky.com/resource-center/definitions/dns

[163] T. Goethals, D. Kerkhove, B. Volckaert, F. D. Turck, Scalability eval-
uation of vpn technologies for secure container networking, in: 2019
15th International Conference on Network and Service Management
(CNSM), 2019, pp. 1–7. doi:10.23919/CNSM46954.2019.9012673.

[164] L. Dwyer, 5 things an ids/ips can’t do, online (Mar 2018).
URL https://blog.cygilant.com/blog/5-things-an-ids/ips-cant-do

[165] J. Cucurull, J. Puiggalí, Distributed immutabilization of secure logs, in:
Security and Trust Management, Vol. 9871, Springer International Pub-
lishing, 2016, pp. 122–137. doi:10.1007/978-3-319-46598-2_9.

[166] Solarwinds, Docker logging strategies, online (Aug 2021).
URL https://documentation.solarwinds.com/en/success_center/loggly/
content/admin/strategies-for-docker-logging.htm

[167] Docker, Use docker logs with remote logging drivers, online (Sep 2021).
URL https://docs.docker.com/config/containers/logging/dual-logging/

[168] M. Syed, E. Fernandez, A reference architecture for the container
ecosystem, in: Proceedings of the 13th International Conference on
Availability, Reliability and Security, 2018.

[169] K. Costello, Gartner predicts the future of cloud and edge infrastructure,
online (Feb 2021).
URL https://www.gartner.com/smarterwithgartner/gartner-predicts-the-
future-of-cloud-and-edge-infrastructure/

[170] H. Li, The road to kata containers 2.0, online (Jul 2020).

URL https://thenewstack.io/the-road-to-kata-containers-2-0/
[171] R. Kumar, B. Thangaraju, Performance analysis between runc and kata

container runtime, in: 2020 IEEE International Conference on Electron-
ics, Computing and Communication Technologies (CONECCT), 2020,
pp. 1–4. doi:10.1109/CONECCT50063.2020.9198653.

[172] C. Shichao, M. Zhou, Evolving container to unikernel for edge com-
puting and applications in process industry, Processes 9 (2021) 351.
doi:10.3390/pr9020351.

[173] H.-C. Kuo, D. Williams, R. Koller, S. Mohan, A linux in unikernel cloth-
ing, in: Proceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys ’20, Association for Computing Machinery,
New York, NY, USA, 2020. doi:10.1145/3342195.3387526.
URL https://doi.org/10.1145/3342195.3387526

[174] P. Olivier, D. Chiba, S. Lankes, C. Min, B. Ravindran, A binary-
compatible unikernel, in: Proceedings of the 15th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE 2019, Association for Computing Machinery, New York,
NY, USA, 2019, p. 59–73. doi:10.1145/3313808.3313817.
URL https://doi.org/10.1145/3313808.3313817

[175] A. Bratterud, A. Happe, R. Duncan, Enhancing cloud security and pri-
vacy: The unikernel solution, in: Eighth International Conference on
Cloud Computing, GRIDs, and Virtualization, 19 February 2017 - 23
February 2017, Athens, Greece, Cloud Computing IARIA, Curran Asso-
ciates, 2017, pp. 79–86, the Eighth International Conferences on Cloud
Computing, GRIDs, and Virtualization, CLOUD COMPUTING 2017 ;
Conference date: 19-02-2017 Through 23-02-2017.

[176] A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, K. Beg-
num, Includeos: A minimal, resource efficient unikernel for cloud ser-
vices, in: 2015 IEEE 7th International Conference on Cloud Comput-
ing Technology and Science (CloudCom), 2015, pp. 250–257. doi:
10.1109/CloudCom.2015.89.

[177] L. Zeng, Y. Xiao, H. Chen, B. Sun, W. Han, Computer operating sys-
tem logging and security issues: a survey, Security and Communication
Networks 9 (17) (2016) 4804–4821. doi:10.1002/sec.1677.
URL https://dx.doi.org/10.1002/sec.1677

[178] L. Thomeczek, Security Analysis of Linux Kernel Features for Embed-
ded Software Systems in Vehicles, in: CARS 2015 - Critical Automotive
applications: Robustness & Safety, Paris, France, 2015.
URL https://hal.archives-ouvertes.fr/hal-01193025

[179] K. Salah, J. M. Alcaraz Calero, J. B. Bernabé, J. M. Marín Perez,
S. Zeadally, Analyzing the security of windows 7 and linux
for cloud computing, Computers & Security 34 (2013) 113–122.
doi:https://doi.org/10.1016/j.cose.2012.12.001.
URL https://www.sciencedirect.com/science/article/pii/
S0167404812001800

[180] Y. Bassil, Windows and linux operating systems from A security per-
spective, CoRR abs/1204.0197 (2012). arXiv:1204.0197.
URL http://arxiv.org/abs/1204.0197

[181] Y. Zhang, B. Fang, Y. Chi, X. Yun, Assessment of windows system se-
curity using vulnerability relationship graph, in: Y. Hao, J. Liu, Y.-P.
Wang, Y.-m. Cheung, H. Yin, L. Jiao, J. Ma, Y.-C. Jiao (Eds.), Com-
putational Intelligence and Security, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005, pp. 415–420.

[182] B. Doerrfeld, 17 open-source container security tools, online (Mar
2021).
URL https://techbeacon.com/security/17-open-source-container-
security-tools

[183] O. Tunde-Onadele, J. He, T. Dai, X. Gu, A study on container vulnerabil-
ity exploit detection, in: 2019 IEEE International Conference on Cloud
Engineering (IC2E), 2019, pp. 121–127. doi:10.1109/IC2E.2019.
00026.

[184] C. Lin, S. Nadi, H. Khazaei, A large-scale data set and an empirical study
of docker images hosted on docker hub, in: 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020,
pp. 371–381. doi:10.1109/ICSME46990.2020.00043.

[185] M. Souppaya, J. Morello, K. Scarfone, Application container security
guide (2017-09-25 2017). doi:https://doi.org/10.6028/NIST.
SP.800-190.

23

https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1145/3106237.3106271
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
http://arxiv.org/abs/1812.02834
http://arxiv.org/abs/1812.02834
http://arxiv.org/abs/1812.02834
http://arxiv.org/abs/1812.02834
https://bugzilla.redhat.com/show_bug.cgi?id=1868453
https://bugzilla.redhat.com/show_bug.cgi?id=1868453
https://bugzilla.redhat.com/show_bug.cgi?id=1868453
https://unit42.paloaltonetworks.com/making-containers-more-isolated-an-overview-of-sandboxed-container-technologies/
https://unit42.paloaltonetworks.com/making-containers-more-isolated-an-overview-of-sandboxed-container-technologies/
https://unit42.paloaltonetworks.com/making-containers-more-isolated-an-overview-of-sandboxed-container-technologies/
https://unit42.paloaltonetworks.com/making-containers-more-isolated-an-overview-of-sandboxed-container-technologies/
https://www.techrepublic.com/article/how-to-install-and-use-git-secret/
https://www.techrepublic.com/article/how-to-install-and-use-git-secret/
https://www.techrepublic.com/article/how-to-install-and-use-git-secret/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files
https://dev.to/gajus/gitignore-mistake-that-everyone-makes-44kb
https://dev.to/gajus/gitignore-mistake-that-everyone-makes-44kb
https://www.cyberark.com/resources/blog/cyberark-labs-research-stealing-service-credentials-to-achieve-full-domain-compromise
https://www.cyberark.com/resources/blog/cyberark-labs-research-stealing-service-credentials-to-achieve-full-domain-compromise
https://www.cyberark.com/resources/blog/cyberark-labs-research-stealing-service-credentials-to-achieve-full-domain-compromise
https://www.cyberark.com/resources/blog/cyberark-labs-research-stealing-service-credentials-to-achieve-full-domain-compromise
https://www.cyberark.com/resources/blog/cyberark-labs-research-stealing-service-credentials-to-achieve-full-domain-compromise
https://attack.mitre.org/techniques/T1003/
https://attack.mitre.org/techniques/T1003/
https://www.kaspersky.com/resource-center/definitions/dns
https://www.kaspersky.com/resource-center/definitions/dns
https://doi.org/10.23919/CNSM46954.2019.9012673
https://blog.cygilant.com/blog/5-things-an-ids/ips-cant-do
https://blog.cygilant.com/blog/5-things-an-ids/ips-cant-do
https://doi.org/10.1007/978-3-319-46598-2_9
https://documentation.solarwinds.com/en/success_center/loggly/content/admin/strategies-for-docker-logging.htm
https://documentation.solarwinds.com/en/success_center/loggly/content/admin/strategies-for-docker-logging.htm
https://documentation.solarwinds.com/en/success_center/loggly/content/admin/strategies-for-docker-logging.htm
https://docs.docker.com/config/containers/logging/dual-logging/
https://docs.docker.com/config/containers/logging/dual-logging/
https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-cloud-and-edge-infrastructure/
https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-cloud-and-edge-infrastructure/
https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-cloud-and-edge-infrastructure/
https://thenewstack.io/the-road-to-kata-containers-2-0/
https://thenewstack.io/the-road-to-kata-containers-2-0/
https://doi.org/10.1109/CONECCT50063.2020.9198653
https://doi.org/10.3390/pr9020351
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1109/CloudCom.2015.89
https://doi.org/10.1109/CloudCom.2015.89
https://dx.doi.org/10.1002/sec.1677
https://dx.doi.org/10.1002/sec.1677
https://doi.org/10.1002/sec.1677
https://dx.doi.org/10.1002/sec.1677
https://hal.archives-ouvertes.fr/hal-01193025
https://hal.archives-ouvertes.fr/hal-01193025
https://hal.archives-ouvertes.fr/hal-01193025
https://www.sciencedirect.com/science/article/pii/S0167404812001800
https://www.sciencedirect.com/science/article/pii/S0167404812001800
https://doi.org/https://doi.org/10.1016/j.cose.2012.12.001
https://www.sciencedirect.com/science/article/pii/S0167404812001800
https://www.sciencedirect.com/science/article/pii/S0167404812001800
http://arxiv.org/abs/1204.0197
http://arxiv.org/abs/1204.0197
http://arxiv.org/abs/1204.0197
http://arxiv.org/abs/1204.0197
https://techbeacon.com/security/17-open-source-container-security-tools
https://techbeacon.com/security/17-open-source-container-security-tools
https://techbeacon.com/security/17-open-source-container-security-tools
https://doi.org/10.1109/IC2E.2019.00026
https://doi.org/10.1109/IC2E.2019.00026
https://doi.org/10.1109/ICSME46990.2020.00043
https://doi.org/https://doi.org/10.6028/NIST.SP.800-190
https://doi.org/https://doi.org/10.6028/NIST.SP.800-190

	Introduction
	Background
	Overview of Containers
	Overview of STRIDE
	Literature Review on Security of Containers
	Vulnerability analysis
	Mitigation strategies


	Threat Modeling using STRIDE
	Plotting the DFD of Containers
	Identifying Vulnerabilities in Containers
	Analyzing Threats in Containers
	Spoofing
	Tampering
	Repudiation
	Information Disclosure
	Denial of Service (DoS)
	Elevation of Privilege


	Existing Mitigation Strategies and Their Limitations
	Multi-Factor Authentication Systems
	Image Security
	Security Patching
	Minimise Administrative Privileges
	Proper Isolation
	Prevent Confidential Data Leaks
	Implement Network Controls
	Robust Log Monitoring

	Summary of Results and Future Research Directions
	Summary of Results
	Future Research Directions

	Conclusion

