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Abstract. Unauthorized access to private resources (such as data and services)
remains one of the most critical security challenges in the realm of cybersecurity.
With the increasing sophistication of attack techniques, the threat of unautho-
rized access is no longer confined to the conventional ones, such as exploiting
weak access control policies. Instead, advanced exploitation strategies, such as ses-
sion hijacking-based attacks, are becoming increasingly prevalent, posing serious
security concerns. Session hijacking enables attackers to take over an already es-
tablished session between legitimate peers, thereby gaining unauthorized access to
private resources. These attacks are typically conducted in a stealthy manner, mak-
ing their detection exceedingly difficult. Unfortunately, traditional access control
mechanisms, such as static access control policies, are insufficient to prevent session
hijacking or other advanced exploitation techniques. In this work, we propose a new
multi-factor authorization (MFAz) scheme that proactively mitigates unauthorized
access attempts both conventional and advanced unauthorized access attacks. The
proposed scheme employs fine-grained access control rules (ARs) and verification
points (VPs) that are systematically generated from historically granted accesses
as the first and second authorization factors, respectively. As a proof-of-concept,
we implement the scheme using different techniques. We leverage bloom filter to
achieve runtime and storage efficiency (even for resource-constrained devices), and
blockchain to make authorization decisions in a temper-proof and decentralized
manner. To the best of our knowledge, this is the first formal introduction of a
multi-factor authorization scheme, which is orthogonal to and distinct from the
widely used multi-factor authentication (MFA) schemes. The effectiveness of our
proposed scheme is experimentally evaluated using a smart city testbed involving
different devices with varying computational capacities. The experimental results
reveal high effectiveness of the scheme both in security and performance guaran-
tees.

Keywords: Access Control, Multi-Factor Authorization, Multi-Factor Security, Session
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1 Introduction

In today’s digital era, the reliance on digital services has increased exponentially. However,
the rapid proliferation of cyber attacks targeting such services has has become a growing
concern among stakeholders. In particular, unauthorized access attacks [39, 14], where
adversaries seek to gain illicit access to protected resources, constitute one of the major
security concerns in the realm of cybersecurity.
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Unauthorized access attacks can generally be classified into two primary categories:
conventional and advanced. In the former case, adversaries exploit vulnerabilities in tradi-
tional access control policies, models, and mechanisms to gain unauthorized access. In the
latter case, adversaries employ advanced exploitation techniques that allow them to gain
unauthorized access. Session hijacking attacks [30, 26] represent a prominent example of
the latter, wherein adversaries compromise active sessions established between commu-
nicating parties (e.g., server and client) with the intent of capturing the session token
or session identifier (SID), thereby obtaining unauthorized access to protected resources.
An SID is a unique token assigned by a server to a client (user) upon the initiation of
a session. It acts as a ticket or credential permitting the user to access authorized re-
sources for the duration of the session. Adversaries may employ a range of techniques
to obtain the SID, including session fixation [40], cross-site scripting (XSS) [21], brute
forcing [32], and session sidejacking [36]. If successful, the adversary could impersonate
legitimate users and take over their active session, thereby gaining unauthorized access
to restricted resources.

A wide range of access control and authorization solutions have been proposed over the
years to combat unauthorized access attacks. The widely adopted solutions are conven-
tional access control models [34, 17, 46, 7], which enforce different access control policies
to safeguard systems or resources against unauthorized accesses. However, while these
solutions could be effective against conventional unauthorized access attacks, they can
be bypassed by advanced exploitation strategies, such as session hijacking. Since session
hijacking occurs after a session has been established between the parties and access has
been granted to legitimate users in accordance with access control policies, conventional
access control measures are inadequate in preventing such attacks.

Another widely adopted method to prevent unauthorized access is the implementa-
tion of multi-factor authentication (MFA) schemes [9, 31, 44, 6]. Although MFA schemes
are principally designed to serve authentication functions, some scholars argue that they
also contribute to addressing authorization concerns by impeding impersonation attacks,
thereby limiting adversaries’ ability to obtain unauthorized access. Nevertheless, this ap-
proach remains ineffective against session hijacking attacks, as such attacks occur subse-
quent to the completion of the authentication process.

Various countermeasures have also been developed against session hijacking-related
attacks. For example, the industrial standard TLS 1.3 protocol [16] offers certain features
to mitigate the likelihood of session hijacking. However, TLS 1.3 does not provide a
mitigation strategy once a session is hijacked. In fact, TLS 1.3 mainly addresses network-
layer vulnerabilities [37] and does not mitigate application-layer vulnerabilities, such as
cross-site scripting (XSS), which can be exploited to hijack SIDs [27].

Other session hijacking countermeasures are generally based on time-out and re-
authentication mechanisms [30], pre- and post-authorization requests [26], multi-layer
data encryption [19], and authentication of transposition-encrypted user information
(ATEUI) [18]. Nonetheless, these approaches remain insufficient to defend against ses-
sion hijacking-based unauthorized access attacks (see details in Section 2). Moreover,
existing authorization approaches do not offer proactive mitigation strategies against ses-
sion hijacking attacks. Furthermore, none of them introduce a multi-factor authorization
strategy to strengthen the defense against unauthorized access attacks. Therefore, it is
imperative to propose advanced authorization techniques that can effectively address such
security risks.
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In this work, we propose a new multi-factor authorization (MFAz) scheme to al-
leviate both conventional and advanced unauthorized access concerns discussed above.
The proposed scheme employs fine-grained access control rules (ARs) and verification
points (VPs) as first and second authorization factors, respectively. The ARs are based
on attribute-based fine-grained access control rules [8] and are primarily used to restrict
conventional unauthorized access attacks. On the other hand, the VPs are systematically
generated from historically granted accesses and nonces (e.g., timestamps) and are used
as a second layer of defense to proactively mitigate session hijacking-based unauthorized
accesses. Access is granted only when both ARs and VPs are successfully verified.

To make our scheme applicable in different settings with varying device capacities,
we have also paid careful attention to efficiency, availability, and decentralization when
designing and implementing it. To this end, we use bloom filter (BF) and blockchain in
the implementation of our scheme. The BF allows us to efficiently store and verify the
generated VPs, achieving high storage and runtime efficiency, thus making the scheme
practical even for resource-constrained devices. The use of blockchain allows us to im-
mutably store the ARs and VPs in a decentralized manner across different devices in a
distributed system. Furthermore, it allows us to achieve greater transparency among the
users/devices, user anonymity, and high availability (by avoiding a single point of failure).
Finally, we tested the scheme using an IIoT-based smart-city testbed that involves dif-
ferent devices with varying computational capabilities, such as edge gateways, PCs, and
Raspberry PIs.

Overall, the proposed scheme addresses not only conventional access control issues
but also advanced unauthorized access threats highlighted above. In general, this work
makes the following key contributions:

– We propose a multi-factor authorization (MFAz) scheme to address both conventional
and session hijacking-based attacks. To achieve this, we employ fine-grained ARs
and VPs as first and second authorization factors, respectively. To the best of our
knowledge, this is the first work to introduce a multi-factor authorization scheme
(which is orthogonal to MFA schemes) against a wide range of unauthorized access
attacks.

– Our scheme proactively mitigates session hijacking attacks regardless of the technique
used to hijack the session.

– The adoption of BF allows us to achieve both runtime and storage efficiency, making
our scheme practical even for resource-constrained devices.

– The adoption of blockchain allows us to immutably store the ARs and VPs and
enables us to make authorization decisions in a decentralized and transparent manner
in distributed systems.

– We evaluate the effectiveness of our proposed scheme (covering both its security and
efficiency guarantees) using a realistic smart-city based testbed equipped with differ-
ent devices of varying capabilities.

2 Related work

2.1 Access control models

A wide range of conventional access control models and mechanisms, such as role-based
[34], attribute-based [17, 8], and policy-based [46], have been adopted to safeguard systems
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and resources against various unauthorized accesses. While these models addressed several
types of access control issues in the past, they also suffered various shortcomings. For
example, the design of weak access control rules and misconfiguration of policies resulted
in catastrophic cyberattacks in various occasions [4]. Moreover, the static and inflexible
nature of these mechanisms make them ineffective against advanced authorization attacks,
such as session hijacking-based unauthorized accesses.

2.2 Resilience against session hijacking attacks

Ogundele et al. [30] proposed a session time-out and re-authentication for authorized
sessions to prevent session hijacking attacks. This method provides a layer of protection
against a user who leaves authenticated sessions unattended. However, suppose a malicious
user is actively targeting this session and able to get the session cookies and hijack the
session before time-out. In that case, it does not have any other security mechanism that
can be relied on.

Manjula et al. [26] proposed a methodology to prevent session hijacking attacks using
pre-authorization and post-authorization requests on a web server. The pre-authorization
process validates the session between client and server through a session-ID. The post-
authorization process distinguishes between two types of requests: web API requests,
which are read-only, and session requests, which are read and write. This approach en-
hances security by detecting malicious activities that attempt to exploit authorized session
requests. However, it has limited flexibility, as it is specifically designed for read-write web
applications and may not be effective against session hijacking in other contexts.

Sathiyaseelan et al. [35] proposed a scheme to prevent session hijacking using mod-
ified one-time cookies (OTCs) and a reverse proxy server (RPS). The RPS acts as an
intermediary between the client and the server, filtering and forwarding all client and
server requests. The RPS verifies each request using OTC, IP address, session ID, and
browser fingerprinting. It generates a new OTC and disposes of the old one each time a
request passes through the RPS for verification. However, the paper does not evaluate
the workload required to dispose of and regenerate the OTC with every access request.
Additionally, the scheme has limited usage because it relies on IP addresses and browser
fingerprints to generate the OTC. As a result, other authorization processes that do not
involve a browser cannot utilize this scheme.

Hwang et al. [18] proposed a defense mechanism called authentication of transposition-
encrypted user information (ATEUI) to prevent session hijacking using user-specific infor-
mation. This user information includes multiple identifiers such as BIOS serial numbers,
device login account information, mainboard serial numbers, UUID values of devices, and
a random number. This methodology is capable of detecting malicious access requests
even when the same IP and MAC addresses of an authorized user are used, due to the
unique user information employed. However, due to the rigorous mechanism, it demon-
strates significantly slower performance. According to the results in [18], compared to
other common techniques, ATEUI takes approximately ten times longer to complete the
process.

2.3 TLS 1.3 and secure cookies

The discussion of session hijacking attacks can be broadly categorized into two layers of
the OSI model – the network layer and the application layer[20]. As an SSL/TLS pro-
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tocol, TLS 1.3 [16] offers several features to mitigate the likelihood of session hijacking.
However, like its predecessors, TLS 1.3 does not provide protection once a session is com-
promised (e.g., if a session ID is leaked due to poor cookie implementation). While TLS
1.3 effectively addresses network-layer vulnerabilities, such as packet sniffing, downgrade
attacks, and weak cryptographic algorithms [37], it does not mitigate application-layer
vulnerabilities, such as cross-site scripting (XSS), which can be exploited to hijack SIDs
[27]. Hence, TLS 1.3 does not provide the necessary prevention for our threat models.

Therefore, in addition to implementing TLS 1.3, web services also adopt secure cookies
to address the limitations of TLS. HTTP cookies [23] have become a widely adopted
component in web client-server communication, serving as a cornerstone for handling
authentication and authorization mechanisms [13]. Cookies store essential information
for web browsing, such as SIDs, which are used to authenticate and authorize clients.
Cookie hijacking has become a common threat leading to data leaks, primarily due to the
use of unencrypted and insecure cookie implementations. Several studies [41, 38, 15, 24]
have demonstrated that securing cookies with the HttpOnly flag, which makes the cookie
inaccessible to JavaScript on the client side, and Secure flag, which ensures the cookie is
only transmitted over encrypted connections (HTTPS), can significantly enhance security
and help mitigate the risk of session ID leakage from cookies.

Therefore, by combining TLS 1.3 and secure cookies, session hijacking attacks could
be minimized due to encrypted and secure communication between the web client and
server. However, our threat model is not only focus on preventing the initial establishment
of session hijacking. But it also focuses on how to proactively mitigate the impact once the
session has already been compromised in anyway (i.e., the attacker has already acquired
the session ID). TLS 1.3 and secure cookies do not provide such proactive mitigation
strategies against session hijacking attacks.

2.4 Multi-factor authorization

To the best of our knowledge, there are no proper multi-factor authorization (MFAz)
schemes (apart from MFA schemes) designed in prior works. However, there are certain
multi-layer related schemes available in the literature. For example, Alsahlani et al. [5]
proposed a lightweight multi-factor authentication and authorization model (LMAAS-
IoT), which only utilizes a one-way hash function and bitwise XOR operation. Fuzzy
extractor algorithm is used to assist in verifying user-side biometric information. However,
this is mainly an MFA scheme, not an MFAz scheme. It does not address concerns about
session hijacking-based attacks.

Addobea et al. [3] introduced a novel approach to mitigate single points of failure
inherent in most designs using a cloud-centric model. Their proposed solution is an access
control system that leverages the blockchain technology to authenticate users by integrat-
ing multiple factors into a time-based access code for generating user private keys. This
model addresses the limitations of non-distributed architectures, such as those based on
cloud models. However, even if it is an access control system, the multi-factor aspect is for
authentication, not for authorization. This scheme also does not provide any mechanism
to detect or prevent malicious activities, including session hijacking attacks.

Kaiser et al. [19] proposed a fully secured data flow system using IAM (Identity Access
Management), MFA (Multi-Factor Authentication), IDAAS (Identity as a service), AAAS
(Authorization as a service), SAML (Security Assertion Markup Language), and data
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encryption using AES. This design relies on the combination of its heavily layered pre-
existing security mechanism. Although it enhances security through heavy layering of the
mechanisms, it is not a proper MFAz scheme. It also does not address session hijacking-
based unauthorized access attacks.

Yao et al. [45] proposed a Zero-Trust architecture for dynamic access control and
authorization, utilizing a trust-based access control (TBAC) model. The model employs
trust and authorization nodes to assign roles and permissions to users. Trust calculation
is derived from the variance between historical and current user behavior. This variance
is then compared against predefined trust thresholds set by the system to determine the
user authorization’s status. However, the user portrait employed in the architecture is
susceptible to subjectivity, which can lead to undesired outcomes.

3 Preliminaries

3.1 Notation

All relevant notations used throughout this paper are summarized in Table 1.

Table 1: Description of notations
Symbol Description
AU Authorized user
UU Unauthorized user
GAi Historical granted accesses of user i

GAj
i The jth session of GAi

SGAi A randomly selected GAs from GAi

V Pi Verification point of user i

V P j
i The jth session of V Pi

Ki A long-term authentication key of Ui

Ui User i
Oi Operation i
Ri Resource i
Ts Timestamp
H(·) A cryptographic hash function

3.2 Bloom filter

Bloom filter (BF) is a space-efficient probabilistic data structure used to represent sets
of elements [25]. Introduced by Burton Bloom [10], the BF is designed to address the
space/time trade-off inherent in hash coding methods by allowing a controlled rate of
errors (false positives). The efficiency of BF in performing fast membership queries is
further elaborated in [11]. BF algorithm primarily involves three operations: initialization,
insertion, and verification.

3.3 Blockchain

Blockchain is a distributed and immutable ledger that records transactions using a peer-
to-peer network connection [22]. Satoshi Nakamoto introduced bitcoin [29] as the first
cryptocurrency distributed system. Following bitcoin, many new distributed cryptocur-
rency systems were introduced, such as Ethereum. Ethereum introduced smart contracts
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into its blockchain system, enabling users to deploy executable programs within blockchain
transactions [12].

Smart contracts are automated executable protocols that verify, validate, and enforce
the terms (contract) made by two or more parties within the blockchain environment [43].
Moreover, smart contracts deployed in the blockchain environment are transparent and
immutable, ensuring tamper-proof execution.

4 Threat model

Our threat model focuses on both conventional access control threats and advanced unau-
thorized access techniques. In the former, we focus on attacks that rely on weak access
control policies or mechanisms. In the latter, we focus on advanced attack techniques
(e.g., session hijacking attacks) that attempt to gain unauthorized access to protected
resources.

4.1 Conventional access control threats

In this section, we discuss conventional access control threats that mainly target weak
access control policies or methods. Access control policies are essential for managing
system security, as they regulate each request made by a client, determining whether
to approve or deny the request [33]. Over the years, various access control models have
been developed, including role-based access control (RBAC), mandatory access control
(MAC), discretionary access control (DAC), zero-trust architecture, and identity-based
access control, among others. However, they all face a common issue: broken access control
(BAC).

BAC is a vulnerability that allows an unauthorized user (UU) to access private re-
sources due to the weaknesses in the established access control policy. This vulnerability
can occur for several reasons, such as misconfigured platforms, unprotected functional-
ity, static files, insecure access control methods, identifier-based functions, and multistage
functions [4]. An adversary can exploit these and other vulnerabilities to gain unauthorized
access to some or all of the protected resources in the system. A high-level architecture
of such attacks is illustrated in Figure 1a.

4.2 Session hijacking threats

In this section, we discuss session hijacking threats, where an UU systematically takes over
an active session established between two legitimate users, e.g., an authorized user (AU)
and a server, to gain unauthorized access to protected resources. A high-level architecture
of this threat is illustrated in Figure 1b. In this threat, the UU aims to obtain the
session ID (SID) of the parties via either a client-side (mostly) or server-side (rarely)
web applications or other services. This can be achieved by employing various techniques,
including session fixation, cross-site scripting (XSS), brute forcing, and session sidejacking
[36].

– Session fixation [40] is a technique where the UU compels the AU to authenticate
using a predefined malicious SID chosen by the UU . As a result, the AU unknowingly
enters an authenticated session using this malicious SID, which is already known to
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the UU , thereby allowing the attacker to gain unauthorized access once the session
is established.

– XSS attack [21] is a technique that allows attackers to exploit vulnerabilities within
a web application to inject malicious scripts into webpages viewed by AU . In this
technique, the UU injects malicious JavaScript code into a webpage that is rendered
by the AU ’s browser. Once the malicious script is executed, it can steal the SID stored
in the AU ’s cookies, URL or elsewhere.

– Brute forcing [32] is a technique where UU attempts to predict or guess an active
SID through trial and error or by analyzing certain patterns.

– Session sidejacking [28] is a technique that allows UU to obtain the SID by in-
tercepting and reading the network traffic between AU and the server. This is often
possible when the communication channel is unsecured.

Once the SID is acquired using any of the techniques discussed above, UU initiates a
replay attack by leveraging the pre-authenticated SID to communicate with the server.
This grants UU access to the authenticated session, allowing them to execute malicious
actions within the context of the authorized session. UU could also launch a DoS or other
attack techniques on AU to end its session with the server, thereby avoiding detection by
preventing two simultaneous uses of the same SID.

4.3 Threat assumptions

In general, we assume the following in our threat model.

– The generated historical granted accesses (GAs) are securely stored in the AU ’s de-
vice, and ARs and V P s on the blockchain. We assume that the adversary cannot
access the GAs.

– The communication channel between AU and the server is properly secured using
SSL/TLS or other security protocols. Hence, the adversary cannot sniff or intercept
any information exchanged between the two parties, including the GAs.

– In case of the conventional access control threats, the adversary can exploit weak
access control rules.

– In case of the session hijacking threats, the adversary can obtain the SID using various
techniques, such as session fixation, cross-site scripting (XSS), and brute forcing, but
not via session sidejacking as the communication channel is secured.

– After obtaining the SID, the adversary may also terminate AU ’s session with the
server (e.g., using DoS or other techniques) and place itself instead. This allows UU
to avoid potential suspicion or detection by preventing two simultaneous uses of the
same SID.

5 MFAz: Proposed Scheme

5.1 Overview

In this section, we discuss our proposed multi-factor authorization (MFAz) scheme that is
designed to address both conventional and advanced (e.g., session hijacking) unauthorized
access attacks. The proposed scheme employs access control rules (AR) and systematically
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(a) (b)

Fig. 1: Threat model: (a) weak access control threats (b) session hijacking threats

generated verification points (V P ) as the first and second authorization factors. The
former is derived from the conventional attribute-based access control model [17]. The
latter is systematically generated from historically granted accesses and nonces (e.g.,
timestamps). To achieve efficiency and further security goals, we leverage bloom filter
(BF) and blockchain when implementing the scheme.

MFAz is designed based on a smart-city based testbed (see Section 6.1 for details)
that involves different devices, including edge gateways, cloud servers, PCs and RPIs.
To simplify our presentation, we use a client-server architecture where we specify user
space (denoting all users who try to access resources from the servers) and server space
(denoting all devices that act as a server and share resources to the users). Motivated
by the architecture of the the smart-city testbed we used, we use blockchain to securely
store AR and V P as smart contracts. The proposed scheme has two main phases: user
enrollment and access authorization.

5.2 Enrollment phase

User enrollment takes place when a new user is registered with any of the servers. This
procedure involves two main processes: credential provisioning and system bootstrapping.
In the former, the user submits its cryptographic credential, e.g., its long-term authen-
tication key Ki, and relevant user attributes to the server. Since the authentication and
key verification processes are orthogonal processes to the access authorization task we
are focusing on, we omitted the details in that regard. Upon receiving the long-term key
Ki, the server initializes the user’s entry in the blockchain. During the V P bootstrapping
process, the server generates certain dummy GAs and V P s for the user. While the V P s
are inserted in the BF and then securely stored in the blockchain, the GAs are securely
stored in the user’s device. These two processes will facilitate the conditions to effectively
enforce the proposed MFAz policy for subsequent access requests of an already enrolled
user.
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5.3 Authorization phase

As discussed in the preceding sections, our proposed scheme involves ARs and V P s as
authorization factors to raise the bar against unauthorized users from getting access to
private resources. The objective of this work is to restrict both conventional access con-
trol threats, where attackers exploit weaknesses in access control policies, and session
hijacking threats, wherein attackers compromise established sessions to impersonate le-
gitimate users and gain unauthorized access to resources. A high-level workflow of the
authorization process is illustrated in Figure 2 and discussed in detail as follows.

1. First, a user (from the user space) sends access request (R) to a server (in the server
space) to access a specific resource. This request consists of the following informa-
tion: the user attribute Ui (e.g., authentication key Ki), the type of operation to be
performed Oi (e.g., read, write and execute), the resource to be accessed Ri, and a
few list of historically granted accesses SGAi that are randomly selected from locally
stored GAs. In conventional systems, a user may present only the session ID (SID) to
gain access to the resource, provided the SID remains valid. However, this approach
does not differentiate between a legitimate user attempting to re-access the resource
after a brief pause and an attacker who may have obtained the SID through illicit
means. Our proposed scheme mitigates this risk and prevents unauthorized access, as
discussed below.

2. Upon receiving the access request, the server makes an informed decision. First, the
server runs the SatAR() algorithm (discussed in Section 5.4) and checks whether the
attributes provided by the user satisfies the ARs stored in the blockchain as a smart
contract. If it is satisfiable, the server performs the next verification. It runs the
VerifyVP() algorithm (cf. Section 5.4 and Algorithm 3 for details) to check whether
the user provided SGAi can be verified. This verification is performed by first con-
verting SGAi into V Pi using the GenVP() algorithm (cf. Algorithm 1), followed by
checking the presence of V Pi in the bloom filter.

3. If both checks satisfied, the server grants the requested access to the user. Then, the
following tasks will be performed subsequently:
(a) The user locally generates GAj

i (i.e., the jth GA of user i) using the GenGA()
algorithm (refer the definition in Section 5.4) and securely store it for future use.

(b) The server also generates GAj
i similarly. Using GAj

i and the user’s key Ki as in-
puts, it then generates the respective V P (i.e., V P j

i ) using the GenVP() algorithm
(cf. Section 5.4).

(c) Then, the server inserts the V P in the bloom filter BF using the InsertVP()
algorithm (cf. Section 5.4) and then stores it on the blockchain using the StorBF()
algorithm (cf. Section 5.4).

4. If any of the authorization mechanisms fail, the server detects the attempt as malicious
activity and it rejects the requested access.

5.4 Algorithms and operations of MFAz

In this section, we describe the main algorithms or operations used in the user enrollment
and authorization processes of MFAz.
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Fig. 2: An illustration of the authorization process in MFAz

– 0/1← SatAR(Ui,Oi,Ri): This algorithm takes the user, operation and resource at-
tributes as inputs and returns 1 if the access control rules specified in AR are satisfied,
and 0 otherwise.

– GAj
i ← GenGA(Ui,Ri,Oi,Ts): This algorithm is run by the user and the server to gen-

erate GAj
i (i.e., the jth GA of user i) by taking attributes Ui (e.g., authentication key

Ki), operation Oi, resource Ri, and the timestamp Ts as inputs. The user generated
GAj

i is securely stored in its device to be used as a token in for future access requests
while the server generated GAj

i is subsequently used to generate the respective V P j
i

and get discarded. The pseudocode is provided in Algorithm 2
– VPj

i ← GenVP(GAj
i,Ki): This algorithm is run by the server to generate V P j

i (i.e., the
jth V P of user i) by taking GAj

i and Ki as inputs. The pseudocode is provided in
Algorithm 1.

– 0/1← CheckVP(VPi,BF): This algorithm is run by the server to check whether a
verification point V Pi is in the bloom filter BF . It returns 1 if V Pi is in BF , and 0
otherwise.

– 0/− 1← InsertVP(VPi,BF): This algorithm is run by the server to insert a verification
point V Pi to the bloom filter BF . It returns 0 if V Pi is successfully inserted to BF
or it is already there, and -1 if there is an error.

– 0/1← VerifyVP(VPi,BF): This algorithm is run by the server to check whether a
particular V P is in the BF.
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– StoreBF(BF,BC): This algorithm is run by the server to store the BF (or the updated
BF after inserting new V P s) on the blockchain (BC). This is achieved through the
invocation of smart contract methods. These smart contracts enable the system to
automatically trigger a new event with the updated BF value, adding the event to
the transaction ledger. This approach ensures a decentralized and secure authorization
process using blockchain.

– FetchBF(BF,BC): This algorithm is run by the server to fetch the latest BF from the
BC via a smart contract method. This method is particularly important when we
verify V P s. Because, we need to first fetch the latest BF from the BC to check the
presence of the V P in the BF .

Algorithm 1: V P generation algorithm
GenVP()

Input: Ui, Oi, Ri, Ts, Ki

Output: V P j
i

1 Generate GAj
i ← GenGA(Ui, Oi, Ri, Ts);

2 Generate V P j
i ← H(GAj

i ,Ki);
3 Insert InsertVP(V P j

i , BF );
4 Store BF → blockchain;
5 return V P j

i ;

Algorithm 2: GA generation
algorithm GenGA()

Input: Ui, Oi, Ri, Ts

Output: GAj
i

1 Generate GAj
i ←

H(Ui, Oi, Ri, Ts);
2 return GAj

i ;

Algorithm 3: V P verification algorithm VerifyVP()

Input: Access Request comprising Ui,Oi, Ri, and SGAi

Output: Access Granted, Access Denied
1 Server receive Access Request from user Ui;
2 First Authorization → Access Control Rules (AR);
3 if ( AR is not satisfied ){
4 return Access Denied;
5 }
6 else{
7 Fetch latest BF from Blockchain;
8 Generate V PTemp ← GenVP(SGAi,Ki);
9 if ( CheckVP(V PTemp, BF ) ){

10 GAj
i ← GenGA(Ui, Oi, Ri, Ts);

11 V P j
i ← GenVP(GAj

i ,Ki) (see Algorithm 1);
12 return Access Granted;
13 else{
14 return Access Denied;
15 }
16 }
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5.5 Implementation details

In this section, we discuss the implementation details of MFAz, mainly on the second au-
thorization factor (i.e., V P ). Firstly, the proposed scheme is built with C/C++ using the
MIRACL cryptography library [2], which is essential for the big number implementation
and also offers fast and precise crypto algorithms. We used SHA-256 as our hash function.

For runtime and storage efficiency, the proposed scheme uses BF to efficiently store
and verify the verification points. The BF is initialized and set to accommodate a set
number of entries with a set percentage of false positive rate. The entries and false positive
rates are subject to future changes depending on usage and the system’s performance
capabilities.

For additional security and decentralization gains, we leverage blockchain to imple-
ment MFAz. It allows us to immutably store ARs and V P s across different devices in
our smart-city network. In particular, we utilize ganache [1] to provide a local blockchain
environment as a testnet for this project.

6 Evaluation

6.1 Experimental setup

To stress test the effectiveness of our proposed scheme, we test it using a realistic smart-
city based testbed (a high-level architecture of the testbed is provided in Figure 3). The
testbed comprises different devices, including IoT edge gateways, PCs, field devices (sen-
sors and actuators), IoT cloud platform, operators and third-party applications. Differ-
ent communication protocols, such as HTTP/HTTPS, TCP, UDP, and MQTT (Message
Queuing Telemetry Transport), are also used to exchange messages or transfer files among
the devices. To assess the runtime performance of the scheme, we run it on the following
devices (acting as servers) representing different hardware and software specifications.

– Gateway: We use an ADLINK technology MVP-510A embedded fanless computers,
a 64-bit system with SMP (symmetric multiprocessing) and vsyscall32 capabilities,
as our IoT edge Gateway. It features a motherboard with 16 GB of RAM. The CPU
is an intel(R) core(TM) i5-9500TE, operating at a base frequency of 2.20 GHz with
a maximum turbo frequency of 3.60 GHz. The software specification for the experi-
mental setup includes ubuntu 22.04 as the operating system. The setup also utilizes
node.js version 18.19.1, python version 3.10.12, and g++ version 11.4.0.

– PC: We use a Dell XPS 13 9315 laptop with a 12th-generation intel core i7 processor
and 16GB of RAM. This system operates on Ubuntu 24.04.

– RPi: We use Raspberry Pi 4 Model B (with a Quad Core Cortex-A72 of 1.5GHz CPU
and 4GB RAM).

For this experiment, the BF is initialized to accommodate approximately 1000 entries
with a 1% false positive rate. This configuration results in a BF data structure consisting
of approximately 9585 bits and utilizes 7 hash functions. This setup effectively balances
memory efficiency with the need to maintain a low false positive rate, ensuring optimal
performance for the specified number of entries.

Additionally, a local blockchain is set up using ganache, providing the test account and
test network for the ETH blockchain environment. This setup allows for the simulation
and testing of blockchain interactions in a controlled environment, ensuring that the
system’s functionality can be thoroughly evaluated.
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Fig. 3: Architecture of the IoT-based smart city testbed

6.2 Security evaluation and discussion

In this section, we discuss the achieved security guarantees of the proposed scheme. The
evaluation is conducted based on our adversarial model discussed in section 4.

Resilience against conventional attacks We tested the scheme using valid and invalid
user attributes and access control rules. It accurately detects the malicious attempts and
it correctly granted access for the legitimate attempts. Therefore, there were no any error
observed with the access control rule related attacks we performed.

Resilience against session hijacking attacks The proposed scheme was rigorously
evaluated using various session hijacking techniques. For instance, tested the scheme using
both real and fake SIDs, as well as combinations of real and fake GAs. The scheme
successfully denied access to all malicious attempts while correctly granting access to
all legitimate ones. Throughout the evaluation, no errors, either false positives or false
negatives, were observed. In the future, we intend to perform more advanced attacks
utilizing malware and other sophisticated techniques.

Security of VPs Vs SIDs As discussed, we employed V P s/GAs as authorization factors
to mitigate session hijacking and other attacks. One may, however, argue how V P s/GAs
provide greater resilience compared to SIDs. SIDs possess a web-oriented nature, often
being embedded within URLs or other web services, which makes them frequent targets for
attackers. In fact, numerous techniques already exist to compromise SIDs. In contrast,
V P s/GAs are generated locally and securely stored on a local machine (cf. Figure 2
about the GAs). The only instance in which GAs leave the local device is when they
are deliberately selected by the user for access authorization. Even then, despite the
assumption of a secure communication channel, these GAs are destroyed immediately
after serving once as authorization factors, thus limiting their exposure. Consequently,
V P s/GAs present a reduced attack surface compared to SIDs. Moreover, V P s/GAs offer
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enhanced verifiability and suitability as authorization factors because they are intrinsically
linked to the user. Their generation is based on the user’s credentials and historical
activities, such as the specific resources accessed, operations performed, and corresponding
timestamps, further strengthening their integrity and trustworthiness.

6.3 Performance evaluation

In this section, we evaluate the runtime of MFAz (only the V P ) based on its computation
time taken during the V P generation and verification processes using the experimental
setup discussed in Section 6.1. The results are based on an average of 50 runs of the
authorization process.

Figures 4 (a), 4 (b) and 4 (c) illustrate the execution time of the V P generation
processes for the Gateway, PC and RPi devices, respectively, obtained from 50 runs. In
the figures, VP Computation represents the time required to generate the new GAj

i and
V P j

i . VP Insertion to BF represents the time required to insert the new V P j
i into BF .

BF Storing to Blockchain represents the time required to store BF in the blockchain
transaction. VP Generation represents the overall time required to complete the VP
generation processes. Table 2 also summarizes the runtime of V P generation processes
for the three types of devices mentioned above.

(a) (b) (c)

Fig. 4: VP generation time of (a) Gateway (b) PC and (c) RPI, for 50 runs

Table 2: Average VP generation time (in ms) for Gateway, PC and RPi

Devices Operations
VP computation VP insertion to BF BF storing to blockchain Total

Gateway 0.0596 0.0238 0.4509 0.5343
PC 0.08852 0.02837 0.962 1.07887
RPi 0.46152 0.11673 3.96281 4.54106

Figures 5 (a), 5 (b) and 5 (c) illustrate the execution time of the V P verification
processes for the Gateway, PC and RPi devices, respectively, obtained from 50 runs.
From the figures, VP Fetching from Blockchain represents the time required to fetch
the latest BF from blockchain. VP Checking represents the verification time required to
verify the SGAi with the latest BF , then returns access granted/denied based on the
verification result. The VP Verification represents the overall time required to complete
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the VP verification processes. Table 3 summarizes the runtime of the V P verification
processes for the Gateway, PC and RPi devices.

The execution times for the processes outlined in Figures 4 (a) – (c) and Figures 5 (a)
– (c) exhibit some fluctuation. This variability can be attributed to commonly existing
conditions such as system loads, inefficient system scheduling policies, cache misses, and
JVM garbage collection, as discussed in [42]. However, based on the experimental results,
while fluctuations do occur, they are infrequent.

On the other hand, the V P checking time using the BF remains constant regardless of
the number of V P s stored. It is reflected in our experiment above wherein across 50 trials,
the V P verification time exhibited no constant increase. This observation confirms that
the incorporation of additional V P within the BF does not impact the V P verification
time.

(a) (b) (c)

Fig. 5: VP verification time of (a) Gateway (b) PC and (c) RPI, for 50 runs

Table 3: Average VP verification time (in ms) for Gateway, PC and RPi

Devices Operations
BF fetching from blockchain VP checking Total

Gateway 0.8943 0.0256 0.9199
PC 1.22844 0.04342 1.27186
RPi 3.97237 0.12676 4.09913

6.4 Storage overhead

We also assessed the storage overhead our scheme based on the experimental setup de-
tailed in Section 6.1. The primary storage cost in the proposed scheme arises from the
utilization of the BF as the core data structure. Other values, such as V P and GA, are
only temporarily utilized during generation. Once generated, all values except for the BF
are discarded from memory.

In our BF initialization, the dynamically allocated bit array occupies 1199 bytes,
while the BF data structure itself uses 56 bytes. Given that the BF is employed to store
V P , a comparison without using the BF reveals that each V P consumes 32 bytes, as
the MIRACL SHA-256 returns a 32-byte hashed value regardless of the input size. With
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our BF initialization, capable of accommodating up to 1000 entries of V P , it effectively
compresses 32,000 bytes of data into just 1255 bytes. This demonstrates the significant
space efficiency achieved through the use of the BF data structure.

7 Conclusion

Unauthorized access has been a critical security concern in today’s digital world. The
emerging of advanced exploitation techniques, such as session hijacking attacks, makes it
even more challenging to alleviate the concern. Unfortunately, existing access control and
authorization mechanisms are not sufficient to address such critical security concerns.

In this paper, we proposed a multi-factor authorization (MFAz) scheme that provides
a proactive mitigation strategy against a wide-range of unauthorized access attacks. The
scheme uses access control rules (ARs) and systematically generated verification points
(VPs) as first and second authorization factors, respectively, to raise the security bar
against conventional and advanced (e.g., session hijacking) unauthorized access attacks.

We implemented the scheme using cryptographic primitives, bloom filter (to achieve
efficiency) and blockchain (to enhance availability and decentralization). Then, we tested
and evaluated the scheme in a smart-city based testbed incorporating different devices
with varying computational capacities. The evaluation results indicate that our scheme
effectively mitigates conventional and session hijacking attacks and enhances the overall
system security. Its efficiency (both runtime and storage overhead) is also experimentally
validated and it is practical even in resource-constrained devices. Future research could
explore further enhancements to our approach by integrating additional security factors
and adapting them to address different threat vectors in other domains.
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