
DARUD: Detecting and Arresting Rogue USB
Devices in the V2X Ecosystem
Eyasu Getahun Chekole

Singapore University of Technology and Design
Singapore, Singapore

eyasu chekole@sutd.edu.sg

Huaqun Guo
Cybersecurity Research Center

Singapore, Singapore
guohuaqun@u.nus.edu

Abstract—Vehicle-to-Everything (V2X) is a cutting-edge tech-
nology in intelligent transportation systems (ITS). In V2X,
various entities communicate and cooperate each other to ensure
road safety and efficiency. However, such communications and
cooperation also pose various security risks to the transporta-
tion system. In particular, due to the involvement of several
unattended roadside devices, such as roadside units (RSUs),
sensors and controllers, the V2X ecosystem is highly vulnerable to
malware attacks. Attackers may use rogue USB devices to inject
various types of malware to the V2X system via the USB ports
of the roadside devices. Such attacks may result in a debilitating
impact on the safety and efficiency of road traffic. Although
a wide-range of approaches have been proposed against USB-
based attacks, most of them have several limitations, especially
when applied in the V2X environment. For example, the widely
adopted approaches against USB-based attacks are scanning USB
devices using anti-malware/antivirus tools (which is often not ef-
fective against zero-day malware), disabling USB ports (security-
through-obscurity has already several drawbacks), whitelisting
USB devices using certain attributes of the USB devices (which
is often bypassed by brute-force attacks and not effective against
dishonest USB users). Furthermore, most of the existing solutions
are implemented only for general-purpose computing devices
(e.g., computers and servers), hence might not be suitable for
sensors and tiny IoT devices involved in the V2X environment.
Moreover, the configuration and update processes of most existing
solutions requires physical access to the devices, which might
not be feasible in V2X where devices and sensors are dispersed
across various roadside locations. In this work, we propose and
implement DARUD – a lightweight and automated toolkit that
dynamically detects and prevents rogue USB devices in V2X. This
is achieved by constructing a USB authorization policy based on
kernel-level USB rules and fingerprints. The proposed solution
can also be configured and updated to the roadside devices over-
the-air via a secured VPN tunneling. This avoids the hassle of
physically configuring or updating the USB-security solutions on
each roadside device. The effectiveness of our proposed approach
is also tested using a realistic V2X infrastructure.

Index Terms—USB Security, USB Authorization, USB
Whitelisting, Port-Security, V2X Security, Malware

I. INTRODUCTION

Nowadays, Universal Serial Bus (USB) storage devices have
been widely adopted in the computing industry, by advancing
the traditional serial and parallel ports. USB offers several
advantages, such as hot swapping, high data processing speed,
and plug-and-play (PnP) capabilities, among others. However,
due to the open standards and insecure designs of USB tech-
nologies, a wide-range of attackers have successfully exploited

various vulnerabilities in USB protocols [1], [2], [3], [4],
[5]. The most widely known USB-based attacks are injecting
various types of malwares (e.g., computer viruses, spyware,
ransomware and computer worms) to the host machines using
rogue USB devices [6], [7]. By doing so, an attacker may
hijack or subvert operations of the host machines, corrupt their
memory system [8], [9] or takeover the machine in general.

The V2X ecosystem is more vulnerable to USB-based
attacks due to the involvement of various unattended devices
and sensors in V2X that are widely dispersed across various
roadside locations. Since the V2X services are also highly
interconnected, a malware attack even on a single V2X de-
vice may result in a devastating impact to the whole V2X
ecosystem. Therefore, USB-based attacks are critical concerns
in V2X [10].

Since USB-based attacks are also common problems even
in general IT systems, a wide-range of countermeasures have
been proposed against these attacks. However, they have sev-
eral limitations, especially when applied in the V2X context.
For example, the most commonly approach to prevent USB-
related attacks is locking or disabling USB ports of the devices
so that an attacker cannot inject a malware via the disabled
ports [11], [12]. Such approach of security-through-obscurity
has already several drawbacks, including restricting service
availability and maintainability. Another widely adopted ap-
proaches against USB-based attacks is scanning USB devices
using anti-malware/antivirus tools [13], [14]. This approach
is often effective only against known malware, i.e., whose
signature or behaviour is already known. It is not effective
against unknown malware or zero-day attacks.

Another widely adopted approach against USB-based at-
tacks is whitelisting USB devices using certain attributes of
the devices [15], [16]. However, since various USB devices
have many attributes in common, brute-force attackers [17]
may easily make a matching with the whitelisting policies.
Moreover, this approach does not work against dishonest users.
For example, a dishonest user may share the attribute values
of his whitelisted USB device to an attacker. The attacker can
then spoof attributes of his own USB device and change it
with the attribute values provided by the dishonest user. This
will whitelist the attackers USB device to get access to the
targeted host machines.

Another common limitation of most of the approaches



discussed above is that the security configurations and updates
are made physically, which requires physical access to the host
device. Such configuration and updating mechanisms might
not be feasible and convenient in the V2X environment as the
devices and sensors in V2X are widely scattered over various
roadside locations. Moreover, the most commonly used USB
protection mechanism in the V2X environment is still physical
security, e.g., physically locking the devices in a cabinet. Such
approaches are not sufficient as an attacker can force to open
cabinets either by unlocking physical keys or breaking the
cabinet itself.

Furthermore, most of the existing solutions are implemented
for general-purpose computing devices (e.g., computers and
servers), hence might not be suitable for sensors and tiny IoT
devices involved in the V2X environment. So, porting such
solutions in the V2X environment could be challenging. Some
solutions might also introduce high runtime overheads, which
may affect the real-time and service availability requirements
in delay-sensitive systems such as V2X [18], [19].

To overcome most of the limitations discussed above, we
propose and implement a lightweight solution that effectively
and dynamically Detects and Arrests Rogue USB Devices
(DARUD) from getting access to the V2X host devices. In
particular, DARUD is lightweight toolkit that combines kernel-
level USB rules and fingerprints to authorize USB devices in
V2X, beyond the general-purpose computing devices.

The USB rules are constructed and generated using certain
attributes (ATTRs) and environment variables (ENVs) of the
USB device. The choice of ATTRs and ENVs is also deter-
mined by certain criteria. For example, the ATTRs and ENVs
must be unique identifiers of the USB device and they must
not change in certain conditions or through time. To generate a
USB rule, DARUD first scans values of the ATTRs and ENVs
specified in the rule construction. The generated USB rule will
be deployed to the host device, and triggered at runtime by a
USB kernel event (i.e., when the USB device is connected to
the host device) and get executed to authorize the device.

However, only the USB rule is not enough to effectively
authorize the USB device. This is because, such USB rules
can be bypassed by brute-force attacks and, as discussed
above, a dishonest user may share the ATTR and ENV values
of his already authorized USB device to an attacker. To
circumvent this problem, we also compute a fingerprint of the
USB device and use it alongside the USB rule to effectively
authorize the USB device. The fingerprint is computed using
a cryptographic hash function over certain attributes of the
USB device (typically the ATTRs and ENVs used to construct
the USB rule) and a nonce (e.g., timestamp). Since it is
computationally infeasible to reverse the attributes and the
nonce from the hash value, the fingerprint is not susceptible
to reverse-engineering or other types of attacks.

Finally, DARUD combines the generated USB rule and the
fingerprint to form the USB authorization policy. This policy
will be deployed at the host devices (i.e., devices deployed at
roadsides) and gets executed at runtime (when triggered by
a USB kernel event) and dynamically authorize USB devices

(i.e., to deny or grant access to the host devices). The en-
forcement (i.e., configuration and update) of the authorization
policy to the roadside devices in V2X is carried out over-the-
air via a secured VPN tunneling. This avoids the hassle of
physically configuring or updating the USB-security solutions
on each roadside device in V2X. The policy will also be stored
only in a specified root directory (e.g., “/lib/udev/rules.d/”
for Linux systems) of the host device to prevent illegitimate
manipulations of it by unauthorized users.

The effectiveness of our proposed approach is tested using
a smart traffic light control system deployed in a realistic V2X
infrastructure. In general, our paper makes the following main
contributions:

1) We propose and develop DARUD – a lightweight toolkit
that effectively and dynamically authorizes USB de-
vices at runtime. DARUD systematically constructs the
authorization policy (using kernel-level USB rules and
fingerprints) to effectively and dynamically detect and
arrest rogue USB devices. It is also effective against
USB-based brute-force and zero-day malware attacks.

2) The proposed approach is effective even in the presence
of a dishonest user who intends to share attributes of his
whitelisted USB device to an attacker.

3) DARUD enforces the proposed authorization policy to
the roadside V2X devices using an over-the-air approach
via a secure VPN tunneling. Hence, the configuration
is hassle-free (not require physical access to roadside
devices) and secured against man-in-the-middle attacks.

4) The effectiveness of the proposed approach is evaluated
using a realistic V2X infrastructure.

5) The proposed approach is efficient and does not intro-
duce any significant delay or service degradation in the
V2X operations.

II. DARUD: THE PROPOSED APPROACH

As discussed in the introduction, DARUD is a lightweight
toolkit we developed to dynamically detect and arrest rogue
USB devices from getting access to the V2X devices. This
is achieved by authorizing USB devices via systematically
constructed kernel-level USB rules and fingerprints. DARUD
comprises several scripts that perform different operations in
the authorization process. It is deployed on a dedicated ma-
chine hosted at the management station where the attributes of
USB devices get scanned for authorization by an administrator.
In the following sections, we discuss a detailed account of
DARUD, including its operations, policy construction, policy
enforcement strategies, and workflows.

A. Scanning attributes

To generate the kernel-level USB rules, we need to first scan
and retrieve values of the relevant USB attributes (ATTRs)
and environment variables (ENVs). When the USB device
is connected to the management machine (where DARUD is
running on), DARUD automatically scans the USB device and
retrieve the required attribute values of the USB device, e.g.,

2



serial number, device ID, manufacturer ID, etc. These values
will be used to generate the USB rules (cf. Section II-B).

B. Constructing USB rules

The USB rules, which will be used to authorize the
USB devices, are constructed using systematically selected
ATTRs/ENVs and their value assignments. In particular, we
construct the rules based on the specifications and naming
conventions of udev (a userspace handler for kernel events
in Linux). In the proposed approach, DARUD constructs the
USB rule as follows.

RUSB ← (ACTION == ACV AL) ∧ (ATTR{1} ==

AV AL1) ∧ (ATTR{2} == AV AL2) ∧ (ATTR{n} ==

AV ALn) ∧ ... ∧ (ENV {1} == EV AL1) ∧ (ENV {2} ==

EV AL2) ∧ (ENV {n} == EV ALn) (1)

Where R stands for rule, ACVAL is the action value which
is either “ADD” (if the rule is to be executed when the USB
device is connected to the host device) or REMOVE (if the rule
is to be executed when the USB device is disconnected from
the host device), AVAL is value of the attribute and EVAL is
value of the environment variable.

The USB rule is then generated using the the retrieved
USB ATTR values (e.g., ATTR{serial} == “370E0051E723”,
ATTR{idVendor} == “0451”, ATTR{idProduct} == “8142”)
and ENV values (e.g., ENV{ID MODEL ID} == “0x24fd”,
ENV{ID NET NAME MAC} == “wlx1c1bb5774f98”). The
generated USB rule will be then saved in the udev file format
and specification.

As discussed in the introduction, the choice of ATTRs and
ENVs is a critical and an important aspect when constructing
a USB rule. Some of the criteria to choose the ATTRs and
ENVs are,

• That uniquely identifies USB devices.
• Non-volatile (not changeable) in certain conditions or

through time. For example, attributes or environment
variables whose values vary when the USB device is
unplugged and plugged again should not be chosen.

C. Computing fingerprint

As discussed in the preceding sections, only the USB rules
are not effective to detect and mitigate rogue USB devices.
Because, there is a high chance that a brute-force attacker
can reproduce the USB rules. Furthermore, a dishonest user
may share attribute values of his authorized USB device to an
attacker in exchange of some incentives.

To overcome these issues, we create a cryptographic finger-
print (FP) of the USB device as an additional layer of security.
More specifically, we use the USB rule created above and a
nonce (e.g., timestamp) as parameters to compute the USB
fingerprint. Formally, the USB fingerprint is constructed as
follows.

FPUSB = H(RUSB , timestamp) (2)

where H(·) is a cryptographic hash function, RUSB is the
whitelisting rule constructed using Eq. (1), and timestamp is
the system time at which the fingerprint is generated and it
serves against replay attacks.

Since reversing a cryptographic hash function is computa-
tionally infeasible, an attacker cannot reconstruct the attributes
and nonce from the generated USB fingerprint. The generated
fingerprint will also be hardcoded to the USB device hardware
in a read-only and immutable format, and can be queried via
USB standard-defined ways. The fingerprint will be then used
alongside the USB rule to form the USB authorization policy
(cf. Section II-D).

D. The authorization policy

The authorization (Authz) policy is the one that decides
whether a given USB device can get access to the host machine
(the roadside V2X device in this case) or not. It is a Boolean-
valued function over the verification of both the USB rule, i.e.,
verify(RUSB), and the fingerprint, i.e., verify(FPUSB).
Formally,

AuthzUSB ← verify(RUSB) ∧ verify(FPUSB) (3)

Where verify(RUSB) and verify(FPUSB) are to be exe-
cuted at runtime when the USB device is connected to the
V2X device. Details are provided below.

Authorization of the USB device takes place when it is
connected to the host machine (or the V2X device in this case).
At the time of plugging the USB device to the V2X device, a
kernel event will automatically trigger (via the udev daemon)
the execution of the USB rule verification, i.e., verify(RUSB)
and the USB fingerprint verification, i.e., verify(FPUSB). In
brief, verify(RUSB) checks the matching between the ATTR
and ENV values of the USB device retrieved at runtime with
that of the values stored in the generated RUSB . Any mismatch
of the ATTR and ENV values means the USB device is not the
authorized one, hence it will be automatically blocked from
accessing the V2X device. Similarly, the verify(FPUSB)
checks whether the fingerprints match at runtime by comparing
the FPUSB value stored in the USB device and the one
previously stored in the V2X device (or by computing a new
FPUSB from the stored RUSB and its respective timestamp).
A mismatch between the two fingerprints means the USB
device is not the authorized one, hence it will be automati-
cally denied access to the V2X device. Therefore, the USB
device will be authorized and get access to the V2X devices
only when both the kernel-rules and fingerprint checks are
successful.

E. Enforcing the policy

One of the limitations with the existing USB-based solutions
is that their inability to easily configure the solutions on
remotely stationed devices. DARUD solved this problem by
implementing an over-the-air security configuration option. As
such, DARUD can remotely enforce the generated authoriza-
tion policy (involving the USB rules and fingerprints) to all

3



Fig. 1. A high-level architecture of DARUD

4



roadside devices involved in the V2X ecosystem. The over-the-
air policy enforcement is carried out via a secured VPN tunnel-
ing to ensure that the policy and related information in transit
is not altered by a man-in-the-middle attack. Furthermore,
since the policy will be stored only in the root directory (e.g.,
“/lib/udev/rules.d/” for Linux systems), the user must have root
access to the remote V2X devices to be able to enforce the
authorization policy. This further prevents illegitimate users
from enforcing an arbitrary authorization policy.

F. Logging port activities

As an additional layer of security, DARUD also includes
a logging functionality. Any USB port activities, e.g., any
attempt of plugging or unplugging USB devices to the V2X
devices, will be logged and reported back to the management
station. The administrator can then monitor any illegal activi-
ties done on the USB ports of the roadside V2X devices.

G. Workflow

As discussed in the preceding sections, DARUD performs
pre-authorization (i.e., scanning the USb device and generating
USB rues and fingerprints at the management station) and run-
time USB authorization (i.e., authorizing the USB device when
it is connected to the host machine at runtime). The overall
USB device authorization process in DARUD is illustrated in
Figure 1.

III. EXPERIMENTAL DESIGN

The effectiveness of DARUD has been tested using a
realistic V2X infrastructure. In particular, it is tested using
an AI-based smart mobility management system (SmartMMS).
SmartMMS is designed to enhance road safety (e.g., by broad-
casting traffic accidents and road hazards to other vehicles)
and traffic efficiency (e.g., by making smart decision when
to turn “ON” or “OFF” traffic and pedestrian lights). This is
achieved by correlating and aggregating various information
obtained from different sensors (e.g., 3D laser scanners, line
laser scanners, pedestrian sensors, video cameras, traffic light
push-buttons and loop detectors) or beacon messages collected
by RSUs from the on-board units (OBUs) of vehicles.

Architecturally, SmartMMS is a complex infrastructure con-
sisting of various devices placed at remote sites (i.e., field
devices) and backend stations. In addition to the sensors
mentioned above, the remote sites consist of site computers
(where SmartMMS runs on), RSUs and network switches.
The backend stations also consists of management computers
(where the proposed USB authorization policy generations
and configurations take place), servers and terminal desktops.
The communication between the remote site and backend
computers is tunneled through a VPN connection (config-
ured using industrial standard cryptographic protocols). The
communication between the vehicle equipped with OBU and
RSUs is carried out via a dedicated short-range communication
(DSRC) wireless link. The overall architecture of SmartMMS
is depicted in Figure 2. Most of the devices involved in

SmartMMS have USB ports, which are susceptible for USB-
based attacks. Therefore, we enforce the proposed policy in
those devices to protect SmartMMS against such attacks.

IV. RESULTS

A. Security guarantees

The effectiveness of the proposed approach is evaluated
using the SmartMMS V2X infrastructure. DARUD effectively
detects and mitigates rogue USB devices without any false
positive or false negative errors. DARUD also ensures end-
to-end security as the over-the-air USB configurations takes
place via a secured VPN tunneling. Furthermore, DARUD
effectively prevents brute-force and zero-day USB attacks as
well as dishonest USB users.

B. Efficiency

The proposed USB authorization policy is very lightweight
and it can only be triggered when a USB device is connected
to the V2X device. As such, there is no any significant delay or
service degradation when DARUD is tested on the SmartMMS
testbed.

V. RELATED WORK

Most of the related works in USB security and their re-
spective limitations are highlighted in the introduction. The
widely adopted USB-security mechanism, especially in the
V2X context, is locking the roadside V2X devices in a cabinet
(some uses smart locking) [11], [12]. Such approach is far
from effective as an attacker can forcibly open or break the
cabinet. Scanning USB devices from malware/viruses is also
another common approach [13], [14]. However, it is not effec-
tive against zero-day malwares. Although USB whitelisting-
based approaches [15], [16] have been promising to prevent
USB-based attacks, they are also often bypassed by hardware
spoofing and brute-force attacks [17]. Therefore, the existing
approaches against USB-based attacks are far from effective,
especially when applied in the V2X environment. We hope
DARUD would help to bridge the research gap in this regard.

VI. CONCLUSION

USB-based attacks have been a widely known security
concerns for decades. Such attacks are even worse in the V2X
environment where several roadside devices and sensors left
unattended. In this work, we developed DARUD, a lightweight
toolkit that systematically authorizes USB devices before they
are in use. Unlike the existing solutions, the authorization
policy in DARUD combines kernel-level USB rules and fin-
gerprints to dynamically detect and block rogue USB devices
in V2X. The proposed approach addressed several limitations
of the existing solutions. These includes, effectively preventing
USB-based brute-force attacks, zero-day attacks, and dishonest
users. It also provides an over-the-air security configuration
option, which is feasible for the V2X environment. In the
future, we are intended to further enhance the processes in
DARUD and evaluate it using different use-cases.

5



Fig. 2. A high-level architecture of the SmartMMS infrastructure

REFERENCES

[1] N. Nissim, R. Yahalom, and Y. Elovici, “Usb-based attacks,”
Computers & Security, vol. 70, pp. 675–688, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404817301578

[2] D. Pham, A. Syed, and M. Halgamuge, “Universal serial bus based
software attacks and protection solutions,” Digital Investigation, vol. 7,
pp. 172–184, 04 2011.

[3] P. Bojović, I. Basicevic, M. Pilipovic, Z. Bojovic, and M. Bojovic, “The
rising threat of hardware attacks: Usb keyboard attack case study,” 2019.

[4] C. Cimpanu, “A list different types of usb attacks,” 03 2018. [Online].
Available: https://www.bleepingcomputer.com/news/security/heres-a-
list-of-29-different-types-of-usb-attacks/

[5] D. V. Pham, A. Syed, and M. N. Halgamuge, “Universal serial
bus based software attacks and protection solutions,” Digital
Investigation, vol. 7, no. 3, pp. 172–184, 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1742287611000041

[6] H. Liu, R. Spolaor, F. Turrin, R. Bonafede, and M. Conti, “Usb powered
devices: A survey of side-channel threats and countermeasures,” High-
Confidence Computing, vol. 1, no. 1, p. 100007, 2021.

[7] R. A. Efendy, A. Almaarif, A. Budiono, M. Saputra, W. Puspitasari, and
E. Sutoyo, “Exploring the possibility of usb based fork bomb attack on
windows environment,” in 2019 International Conference on ICT for
Smart Society (ICISS), vol. 7, 2019, pp. 1–4.

[8] E. G. Chekole, J. H. Castellanos, M. Ochoa, and D. K. Y. Yau,
“Enforcing memory safety in cyber-physical systems,” in Katsikas S.
et al. (eds) Computer Security. SECPRE 2017, CyberICPS 2017, 2017.
[Online]. Available: https://doi.org/10.1007/978-3-319-72817-9 9

[9] E. G. Chekole, S. Chattopadhyay, M. Ochoa, and G. Huaqun,
“Enforcing full-stack memory safety in cyber-physical systems,”
in Proceedings of the International Symposium on Engineering
Secure Software and Systems (ESSoS’18), 2018. [Online]. Available:
https://doi.org/10.1007/978-3-319-94496-8 2

[10] A. D. Kumar, K. N. R. Chebrolu, R. Vinayakumar, and S. K. P,
“A brief survey on autonomous vehicle possible attacks, exploits and
vulnerabilities,” CoRR, vol. abs/1810.04144, 2018.

[11] J. Oliveira, P. Pinto, and H. Santos, “Distributed architecture to enhance
systems protection against unauthorized activity via usb devices,” Jour-
nal of Sensor and Actuator Networks, vol. 10, 2021.

[12] CurrentWare, “How to disable usb ports & block usb mass storage
devices,” 2021. [Online]. Available: https://www.currentware.com/how-
to-disable-usb-ports/

[13] S. Neuner, A. G. Voyiatzis, S. Fotopoulos, C. Mulliner, and E. R.
Weippl, “Usblock: Blocking usb-based keypress injection attacks,” in
Data and Applications Security and Privacy XXXII, F. Kerschbaum and
S. Paraboschi, Eds. Cham: Springer International Publishing, 2018.

[14] A. Safarkhanlou, A. Souri, M. Norouzi, and S. E. H. Sardroud,
“Formalizing and verification of an antivirus protection service
using model checking,” Procedia Computer Science, vol. 57,
pp. 1324–1331, 2015, 3rd International Conference on Recent
Trends in Computing 2015 (ICRTC-2015). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050915019729

[15] H. Mohammadmoradi and O. Gnawali, “Making whitelisting-based
defense work against badusb,” in Proceedings of the 2nd International
Conference on Smart Digital Environment, ser. ICSDE’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 127–134.

[16] X. Shen, N. Li, C. Liu, and M. Cai, “Wmud: A whitelist method of usb
devices redirection for virtual desktop,” in IEEE 21st International Con-
ference on High Performance Computing and Communications; IEEE
17th International Conference on Smart City; IEEE 5th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2019.

[17] E. Tirado, B. Turpin, C. Beltz, P. Roshon, R. Judge, and K. Gagneja,
“A new distributed brute-force password cracking technique,” in Future
Network Systems and Security, R. Doss, S. Piramuthu, and W. Zhou,
Eds., 2018.

[18] E. G. Chekole and G. Huaqun, “Ics-sea: Formally modeling the con-
flicting design constraints in ics,” in Proceedings of the Fifth Annual
Industrial Control System Security (ICSS) Workshop, 2019, p. 60–69.

[19] E. G. Chekole, S. Chattopadhyay, M. Ochoa, H. Guo, and
U. Cheramangalath, “Cima: Compiler-enforced resilience against
memory safety attacks in cyber-physical systems,” Computers
& Security, vol. 94, p. 101832, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404820301061

6


